The bumpy first year of GBOT

Martin Altmann ZAH Heidelberg GaiaFUN 2014 Paris 24th November 2014

european space agency agence spatiale européenne

Outline

- Gaia's brightness
- Theoretical foundations
- Measurements
- Recommendations
- Current status
- Triggered Mode
- Towards the re-reduction phase
- GBOT finds asteroids

ropean space agency jence spatiale européenne

Gaia's Brightness

- Directly after lauch: Gaia is 21 instead of 18!!!!
 Major impact on GBOT operations
- Final L2 brightness range needed
 - By GROND multicolour- and GBOT's own photometry
 - Because of distance and EAA variations: brightness range
- Assumptions about long term development
 Theoretical considerations
 - monitoring

Jopean space agency gence spatlale européenne

Gaia's Brightness

•GBOT's own photometry

Gaia

Gaia's Brightness

GROND grizJHK simultaneous photometry

GBOT

Gaia

Gaia's Brightness

- No unexplainable trends in Brightness
- Distance, elongation and EAA play a role
- Brightness ranges between 20.2 and 21.6

ropean space agency ence spatiale européenne

Theoretical foundations

- Sub-sky level forced brightness us to explore the limits one can reach with our means
- Cramer Rao lower boundary provides theoretical limit of what can be achieved.
- Mendez et al. (2013) have applied these principles to common astrometric scenarios
 - Meeting with Mendez of MA, SB, RS, AA in Torino, 28.3. (well sort of)
 - Bouquillon is extending this study to our needs, i.e. a faint moving object

ropean space agency ence spatlale européenne

Theoretical foundations

.24. Nov. 2014

Theoretical foundations

- 2m+ telescopes needed
 - For 2.6 m VST 10x60 secs is adequate
 - For smaller telescopes, CRLB is near the limit
- 15x60 secs may be the better deal
 - Sebastien Bouquillon: exptime might be optimised
 - We are still in business!

opean space agency ence spatlale européenne

Measurements

- VST is backbone
- LT delivers useful data in 40%
- Faulkes less, reason still not clear
 - Telescopes are obtaining data at nominal rate
 - Observing strategy needs to be optimised for optimal usage of resources
 - Other telescopes might be considered, Calar Alto, UHawaii, etc.

ropean space agency lence spatiale européenne

Measurements

24. Nov. 2014

Measurements

GBOT

Gaia

24. Nov. 2014

13

Measurements

european space agency agence spatiale européenne

Measurements

- VST delivers useful data for about 65% of the nights (incl. FM break)
- LT somewhat less
- VST sufficient precision
- LT should be enhanced to 15x60 secs.
- Both can deliver GBOT grade data
- FTs like LT?
- Compromises
 - Larger Full moon break
 - More bad data, i.e. Ambient conditions more important
 - Background stars larger problem

uropean space agency gence spatlale européenne

Recommendations

- Current network: VST, LT, FTS, FTN
- Adjustments of observing sequence
 - 2.0 m telescopes: 15x60 sec instead of 10x60, better would be even more exposures per sequence; VST: okay
- Adjustment of operations mode
 - VST being backbone facility
 - LT/FT being triggered, when VST is not available (bad weather, visitor observations, technical reasons)
 - Significantly increasing sequence cadence
 - Trigger mode being tested now
 - Aim is 75% within specs for each delivered sequence

Current status

- Nominal operations, 21-24 days/month, full moon break 7 nights (VST: 5 nights)
- Reassessment phase ongoing, moving from overall feasibility to optimisation, until March 2015
- Monthly deliveries to ESOC since April
- FD team at ESOC does at current not use the GBOT data due to the accuracy issues caused by zonal errors in the reference catalogue (to be expected, GBOT2 meeting, 2011)
- June difficult month, due to pasage of Gaia through Galactic centre

ropean space agency jence spatiale européenne

eloom loored mode

- VST delivers data in sufficient precision, but has gaps, due to weather, visitor observers (seldom, since VM is not generally offered for VST), technical problems
- Other telescopes have difficulties reaching criteria with 10 or 15 exposures
 - Sequence with more exposures desirable
 - Time budget limits
 - Longer sequences make daily exposures difficult or less feasible
 - Duplicate sequences
- Better organisation of GBOT resources required ATriggered mode
 - Closes gaps in VST data
 - Allows longer sequences at LT/FT if not daily observations

uropean space agency gence spatlale européenne

Triggered mode

- VST most reliable source, quantity, quality → backbone of GBOT operations
- Other telescopes are backup, triggered when VST is not available
- Trigger events
 - ESO Paranal weather forecast
 - 1 night without VST data
 - Information from ESO (technical downtime, visiter mode (VST normally not offered in VM)
- GBOT office does coordination
 - Daily consulting of Paranal weather forecast
 - Communication with ESO
 - Invoking triggers at LT/FT
 - Currently triggered mode is being tested

uropean space agency gence spatlale européenne

Towards the Re-Reduction

- Current results only preliminary
 - Limits of reference material astrometric accuracy
 - Photometry of the background stars (DCR)
- Final results with Gaia data
 - First release mid-2016
 - Photometry somewhat later
- 2015 GBOT will prepare for this crucial phase
 - **Optimisation of pipeline & database**
 - Roadmap

ropean space agency ence spatiale européenne

- Gaia is located near the plane of the ecliptic
 - Many main belt asteroids in this region of the sky
 - Some will be recorded on the GBOT data
- Search for asteroids can be conducted automatically with some moderate adjustments to our pipeline
- Not a huge scientific impact expected, but some new findingd and improvements to orbits possible
 - Decision: not hi-priority but "why not"
 - Paris group and Jon Marchant (LJMU) implemented asteroid search

uropean space agency gence spatlale européenne

24. Nov. 2014

GBOT goes asteroid hunting

- Since 30.10. about 25 objects found
 - 16 not yet registered at MPC
 - Rest recent discoveries with preliminary ID
 - Magnitudes 18 to 22
 - Data sent to MPC
- Problem, GBOT can only provide one epoch
- Follow up needed
 - Potential larger than originally anticipated

ropean space agency ence spatiale européenne

24. Nov. 2014

GBOT goes asteroid hunting

Summary & outlook

- Since launch magnitude shock, GBOT has gone through a riogorous reassessment process
- Reassessment ongoing, also to cover one full orbit
- With some compromise GBOT can still reach the aims in terms of precision
 - Larger gaps and more discarded data
- Fewer resources are being used more effectively
- The hour of truth (re-reduction) is drawing closer
- GBOT finds asteroids :-)

uropean space agency gence spatlale européenne

Gaia DPAC

We are not quite there yet.. but getting there!

HAPPY

Pharrell Williams

GBOT

