Interrelations between asteroid populations

Mikael Granvik Dept. of Physics, U Helsinki Finnish Geodetic Institute

Gaia FUN SSO workshop #3, 24 November 2014, IMCCE, Paris

Solar-system evolution (short version...)

Population model

$n(a,e,i,H) = \varepsilon(a,e,i,H)N(a,e,i,H)$ $\uparrow \qquad \uparrow \qquad \uparrow$

observed population discovery efficiency (this is what we see) (this is estimated numerically for each survey) true population (this is what we want to know)

KUIPER BELT OBJECTS (KBO)

Gaia will detect very few KBOs – the focus of this talk is on the inner solar system

Gaia FUN SSO WS#3, IMCCE, Paris

Orbit distribution for all known asteroids in the inner solar system

Absolute magnitudes for asteroids in the inner solar system

Predicted orbit distribution for H<18 asteroids in the inner solar system

JOVIAN TROJAN OBJECTS (JTO)

V(1,1,0)

Leading vs trailing cloud

MAIN-BELT OBJECTS (MBO)

Statistical Asteroid Model (SAM)

NEAR-EARTH OBJECTS (NEO)

Gaia FUN SSO WS#3, IMCCE, Paris

Eccentricity

Source-dependent constraints
from orbital dynamics
$$n(a,e,i,H) = \varepsilon(a,e,i,H)N(H)\sum_{i=1}^{N_s} f_i R_i(a,e,i)$$
$$\bigstar$$

NEO detections by CSS 2005-2012

Mt. Lemmon (G96)

Catalina (703)

Narrow & deep

Wide & shallow

Detection probability for CSS

Detection probability for CSS

Initial conditions for residence integrations from known MBOs

Residence-time integrations

Source classification when q=1.3 au

Residence-time distributions

Relative density Relati

2:1J complex

JFC

PRELIMINARY RESULTS USING G96 ONLY

Model calibration

G96 model vs G96 observations

red = predicted, blue = observed

Incremental H distributions per source

NEO source ratios as a function of H

Photometric phasecurves provide a proxy for albedo and surface properties

In the future, we will...

- include G₁₂ (or, G₁ and G₂) slope parameters as a proxy for albedo and surface physical properties,
- use observed H distributions and G₁₂ (and spectra?) in different source regions to constrain NEO model,
- construct MBO model with more reliable extrapolation to smaller sizes by using constraints from NEOs.

WHAT DOES GAIA PROVIDE?

Gaia provides...

- a stable and well-understood all-sky survey,
- superb astrometry for new (and old!) discoveries,
- photometric and spectrometric characterization for a large fraction of the asteroid population,
- that is, orbits, H & G₁₂, spectral classification, asteroid families, *high-quality metadata*, etc.

WHAT IS GAIA-FUN-SSO'S ROLE?

Astrometric follow-up

Gaia does not produce photometry in the direction of opposition – need for photometric follow-up

Summary

- Reliable extrapolations to sizes below the completeness level currently only available for NEOs – simple extrapolation for MBOs and JTOs.
- Simultaneous modeling of the NEO and MBO populations will have a major impact on our understanding of both populations – physical properties for NEOs, smaller sizes for MBOs.
- Gaia offers a survey from a stable and well-understood platform, producing orbits, phase-curve parameters, and spectra.
- Gaia-FUN-SSO is a critical component in ensuring astrometric follow-up for new (NEO) discoveries and could also be critical in ensuring high-accuracy photometric (NEO) follow-up at small phase angles.