Interrelations between asteroid populations

Mikael Granvik
Dept. of Physics, U Helsinki
Finnish Geodetic Institute

Solar-system evolution (short version...)

Population model

$$
n(a, e, i, H)=\varepsilon(a, e, i, H) N(a, e, i, H)
$$

observed population discovery efficiency (this is what we see) (this is estimated numerically for each survey)
true population (this is what we want to know)

KUIPER BELT OBJECTS (KBO)

Gaia will detect very few KBOs - the focus of this talk is on the inner solar system

Orbit distribution for all known asteroids in the inner solar system

Absolute magnitudes
 for asteroids in the inner solar system

[^0]
Predicted orbit distribution for $\mathrm{H}<18$ asteroids in the inner solar system

JOVIAN TROJAN OBJECTS (JTO)

Leading vs trailing cloud

Szabo 2007

Grav+ 2011

MAIN-BELT OBJECTS (MBO)

Statistical Asteroid Model (SAM)

NEAR-EARTH OBJECTS (NEO)

Known asteroids with D>3km

Source-dependent constraints from orbital dynamics

$$
n(a, e, i, H)=\varepsilon(a, e, i, H) N(H) \sum_{i=1}^{N_{S}} f_{i} R_{i}(a, e, i)
$$

\square

NEO detections by CSS 2005-2012

Mt. Lemmon (G96)

Narrow \& deep

Catalina (703)

Wide \& shallow

Detection probability for CSS

Detection probability for $8<\mathrm{i}<12 \mathrm{deg}$ and $\mathrm{H}=15.125$

Detection probability for CSS

Detection probability for $8<\mathrm{i}<12 \mathrm{deg}$ and $\mathrm{H}=15.125$

Initial conditions for residence integrations from known MBOs

Residence-time integrations

Source classification when $q=1.3$ au

Residence-time distributions

Gaia FUN SSO WS\#3, IMCCE, Paris

PRELIMINARY RESULTS USING G96 ONLY

Model calibration

G96 model vs G96 observations

red $=$ predicted, blue $=$ observed
red $=$ predicted, blue $=$ observed

red $=$ predicted, blue $=$ observed

Incremental H distributions per source

NEO source ratios as a function of H

Photometric phasecurves provide a proxy for albedo and surface properties

In the future, we will...

- include G_{12} (or, G_{1} and G_{2}) slope parameters as a proxy for albedo and surface physical properties,
- use observed H distributions and G_{12} (and spectra?) in different source regions to constrain NEO model,
- construct MBO model with more reliable extrapolation to smaller sizes by using constraints from NEOs.

WHAT DOES GAIA PROVIDE?

Gaia provides...

- a stable and well-understood all-sky survey,
- superb astrometry for new (and old!) discoveries,
- photometric and spectrometric characterization for a large fraction of the asteroid population,
- that is, orbits, $\mathrm{H} \& \mathrm{G}_{12}$, spectral classification, asteroid families, high-quality metadata, etc.

WHAT IS GAIA-FUN-SSO'S ROLE?

Astrometric follow-up

Gaia FUN SSO WS\#3, IMCCE, Paris

Gaia does not produce photometry in the direction of opposition - need for photometric follow-up

Summary

- Reliable extrapolations to sizes below the completeness level currently only available for NEOs - simple extrapolation for MBOs and JTOs.
- Simultaneous modeling of the NEO and MBO populations will have a major impact on our understanding of both populations physical properties for NEOs, smaller sizes for MBOs.
- Gaia offers a survey from a stable and well-understood platform, producing orbits, phase-curve parameters, and spectra.
- Gaia-FUN-SSO is a critical component in ensuring astrometric follow-up for new (NEO) discoveries and could also be critical in ensuring high-accuracy photometric (NEO) follow-up at small phase angles.

[^0]: Gaia FUN SSO WS\#3, IMCCE, Paris

