Y. Chernetenko, L. Gudkova, R. Gumerov, I. Khamitov, O. Kochetova, N. Maigurova, G. Pinigin

Asteroid observations for mass determination at RTT-150 during 2004-2013

Nadiia Maigurova

Nikolaev Astronomical Observatory,

Ukraine

Plan

- Telescope
- List for observations
- Analysis of astrometrical observations of perturbed asteroids
- Using RTT-150 astrometric observations for mass determination of perturbing asteroids

Russian-Turkish Telescope (D=1.5m)

Location: Tubitak National Observatory **Observatory Code A84** Coordinates: 36° 49' 27" N, 30° 20' 08" E Elevation: 2500 м **Focal Plane Instruments : CCD-cameras** ANDOR (2Kx2K, 13.5x13.5mkm, 8.2'x8.2 ' FOV, 0.24"/pixel), focus =11.5m TFOSK (2Kx2K, 15x15mkm, 13' x13' FOV, 0.39"/pixel) **Photometric Systems**

Bessel UBVRI

SDSS u'g'r'i'z'

Taken from http://www.tug.tubitak.gov.tr/images/rtt150.jpg

CHARACTERISTICS OF THE RTT-150 ASTEROID OBSERVING PROGRAM

0

•	Time coverage	04 -2	013	N	Г
•	Number of asteroids		231	2000	
	for dynamical mass determination		96	2000	-
•	Total number of observations ~14.0	000/8	.000		
•	Mean number of observations per aste	eroid	10.4	1500	-
	Median		6	la seconda de la	00
•	Mean positional accuracy (RA/DEC), (m	nas) . 8	84/68	1000	
•	Reference frame ICRI	F/UC/	AC2-4		Ī
•	Photometric Systems	/, B, F	R, g'r'	10045140	
•	Exposure times (s)	5	-300	500	26
•	Limiting magnitude (in R)		20.3		

Number of RTT-150 asteroid observations Grey column – total, blue column – for mass determination

Wide spread of dynamic method of mass determination became available thanks to:

 Growing number of astrometric measurements

 Increased accuracy of groundbased observations

- Program : lists of single and multiple close encounters by Fienga A. et al., (2003), Galad A., (2001), Galad A. and Gray B. , et al. (2002), Thuillot W., (2004), Mouret S. et al., (2008)
- Criterion : deflections of the perturbed asteroids orbits have to change observable quantities (right ascension or declination) and the values of minimum change in right ascension or declination has to be not less 50 mas

From table 3 (A. Fienga et al. A&A 406, 2003)

	<mark>10</mark>	<mark>75</mark>	<mark>9/2005</mark>	0.0135	<mark>5.6478</mark>	<mark>51.18</mark>	<mark>218.71</mark>	<mark>66.17</mark>	<u>10/2010</u>
	10	410	1/2005	0.7703	1.1202	22.84	-108.29	25.14	6/2010
	16	49	10/2016	0.1083	2.8884	16.34	-58.03	-27.5	9/2020
	<mark>16</mark>	<mark>1082</mark>	<mark>2/2003</mark>	<mark>0.1198</mark>	<mark>2.4622</mark>	<mark>20.31</mark>	<mark>77.59</mark>	<mark>-14.73</mark>	11/2008
	19	20	8/2019	0.462	0.2038	295.25	-55.02	16.58	12/2019
	19	494	3/2019	0.0103	3.2532	52.2	81.2	34.06	11/2021
	48	300	4/2017	0.0084	2.4498	70.55	157.13	-35.2	11/2020
	52	627	7/2009	0.0605	3.0013	16.63	-52.97	-15.53	9/2013
	<mark>87</mark>	<mark>846</mark>	<mark>4/2003</mark>	<mark>0.0609</mark>	<mark>3.4491</mark>	<mark>22.28</mark>	<mark>51.87</mark>	<mark>-12.15</mark>	<mark>5/2008</mark>
	511	856	12/2013	0.1108	3.0394	11.09	64.52	-17.11	5/2019
_	511	1003	5/2017	0.0819	3.6659	10.31	-97.63	26.52	8/2020
	<mark>704</mark>	<mark>253</mark>	<mark>1/2003</mark>	<mark>0.02</mark>	<mark>5.6332</mark>	<mark>16.33</mark>	<mark>96.67</mark>	<mark>-14.7</mark>	<mark>5/2009</mark>
_	704	977	10/2005	0.0093	9.5192	12.34	60.89	-23.11	8/2009
	804	733	2/2015	0.0138	2.3737	45.53	-73.82	-34.89	4/2019

Selection: 105 perturbed asteroids for determination of the masses of 29 perturbing asteroids

Fig. 1. Perturbations in right ascension and declination induced by the encounter between 704 Interamnia and 253 Mathilde and between 85 Io and 779 Nina. On the first plot, the estimated epoch of encounter is 2003, but the maximum impact would be observed in 2009. The estimated epoch of encounter for the second encounter is 2013, but the perturbations on the observed angles are maximum in 2016.

A. Fienga et al. A&A 406, 2003

PERTURBED ASTEROIDS

Perturbing Asteroid	Size,	Number of perturbed asteroids according list:				
	km	FIENGA (2003)	GALAD (2001, 2002)	THUILOTT (2004)	GAIA	
1 CERES	952		5303	119	1847, 4325, 5564, 8038, 8610, 13801, 15518, 43170, 46938, 52708, 57917, 71071, 88041, 97442	
4 VESTA	530		17, 113,	535	14949, 15828, 30309, 42965, 71343, 93094	
6 HEBE	185				50561	
9 METIS	190	175			18163, 42798, 56011	
10 HIGIEA	407	75, 410, 209, 983	3946, 6006, 11215, 24433		465, 828, 3630, 6104, 19177, 30051, 49573, 165123, <mark>168793</mark>	
11 PARTHENOPA	153				28625	
13 EGERIA	208		14689			
14 IRENE	152				28701,74483	
15 EUNOMIA	255				765, 14401, 19028, 45467	
16 PSYCHE	253	60, 316, 468, 1054, 1082		331	12621, 17794, 85665	
24 THEMIS	198				4366, 8970, 34519	
29 AMPHITRITE	212		987			
31 EUPHROSYNE	256	965				

PERTURBING – PERTURBED ASTEROIDS

Perturbing Asteroid	Size,	Number of perturbed asteroids according list:					
	km	FIENGA (2003)	GALAD (2001, 2002)	THUILOTT (2004)	GAIA		
45 ELIGENIA	215		673	834 4959	47013		
52 EUROPE	302		124	110	58. 6210. 8150		
64 ANGELINA	?				4000, 9921, 41858		
72 FERONIA	86				11349		
87 SYLVIA	261	846			8976		
88 THISBE	232				33578		
94 AURORA	205				99042,161165		
128 NEMESIS	188				41756, 89949		
268 ADOREA	140				23578		
423 DIOTIMA	209				72812, 115432		
505 CAVA	115				26953		
511 DAVIDA	326		11985	1295	82732		
690 WRATISLAVIA	135				257606		
704 INTERAMNIA	317	253, 977					
762 PULKOVA	137				14685		
790 PRETORIA	170				43488		

Size of asteroids are taken from (<u>http://ssd.jpl.nasa.gov/sbdb.cgi#top</u>)

Analysis of astrometric observations of asteroids

Processing and Astrometric Reductions

- Astrometric reductions were made without bias, dark and flat corrections.
- Getting instrumental coordinates of the objects and reference stars in the system matrix : PSF function:
- Radially symmetric Gaussian (Astrometrica <u>http://www.astrometrica.at/</u>, Herbert Raab) Moffat profile functions (IZM CCD, Igor Izmailov, <u>http://www.izmccd.puldb.ru</u>/)
- Performing astrometrical reductions for equatorial coordinates of objects:
 Reference catalogues UCAC2 -4
 Connection model between the tangential and the measured coordinates:
 Linear, polynomial 2nd order

Analysis of astrometric observations of asteroids

Distribution of the RTT-150 asteroid observations in celestial sphere

Reference Catalogues Used for Asteroid Reductions

D. Farnocchia, S.R. Chesley , A.B. Chamberlin a, D.J. Tholen Star catalog position and proper motion corrections in asteroid astrometry (2015)

Processing and Astrometric Reductions UCAC4

The positional accuracy of stars in UCAC4 at mean epoch is about 15 to 100 mas per coordinate, depending on magnitude, while the formal errors in proper motions range from about 1 to 10mas/yr depending on magnitude and observing history. Systematic errors in proper motions are estimated to be about 1 to 4 mas/yr. (Zacharias et al, AJ, 2014)

Fig. 24.— Distribution of UCAC4 proper motion errors per coordinate.

Fig. 23.— Distribution of errors per coordinate for UCAC4 positions at epoch 2000, which is close to the mean epoch.

Processing and Astrometric Reductions

RTT150 positional errors of asteroids are shown as a function of their apparent magnitudes in RA and DE.

Processing and Astrometric Reductions

Application: Dynamical masses

- The dynamic method of mass determination is based on gravitational influence of perturbing asteroid on perturbed bodies.
- The model of motion includes the gravitational perturbations from all the major planets, as well as Ceres, Pallas, Vesta (the perturbations from the Earth and Moon were considered separately). The major planets' coordinates were calculated using ephemeris DE405.
- Least squares method (LSM) was used to determine the masses of perturbing asteroids for solving systems of conditional equations.

Scheme of weights

the state of the s
WEIGHT
1/16
1/9
1/4
1

Application: Dynamical masses

I. High precision positions of perturbed asteroids in ICRF/UCAC2-4 system were selected from the catalog of positions asteroids, obtained from observations in 2004-2013. Selected data were used for mass determinations of the 20 perturbing asteroids

Perturbing Asteroid	Mass ¹ , (Mass_柋)	Uncertainty ¹ , (Mass_茯)	Mass ² , (Mass_☆)	Uncertainty ² , (Mass_🌣)
15	1.38E-011	1.46E-012	1.25E-011	1.34E-012
16	2.19E-013	2.31E-012	3.98E-013	2.17E-012
24	-1.16E-011	4.43E-012	-1.22E-011	4.12E-012
45	-2.71E-011	5.83E-012	-1.70E-011	4.47E-012
52	1.23E-011	1.43E-012	1.25E-011	1.28E-012
423	-1.08E-011	3.72E-012	-1.05E-011	3.34E-012
511	2.57E-011	1.69E-011	2.42E-011	1.60E-011
704	1.17E-011	5.27E-012	1.40E-011	4.85E-012
762	6.46E-012	3.76E-012	5.21E-012	3.04E-012
790	2.14E-012	6.86E-012	4.17E-012	5.36E-012

¹ only MPC data on moment July, 2013;

² MPC data+RTT-150 asteroid observations.

Application: Dynamical masses

Perturbing	Mass ¹ ,	Uncertainty ¹ ,	Mass ² ,	Uncertainty ² ,
Asteroid	(IVIass_\$;)	(IVIass_\$;)	(IVIass_\$})	(Mass_\$?)
1	4.74E-010	1.03E-012	4.73E-011	0.97E-012
4	1.21E-010	0.42E-012	1.21E-013	0.38E-012
9	0.37E-010	0.65E-011	0.37E-010	0.59E-011
10	0.41E-010	0.84E-012	0.41E-010	0.74E-012
11	0.26E-011	0.41E-013	0.26E-011	0.39E-013
13	0.30E-011	0.18E-011	0.31E-011	0.17E-011
31	-0.37E-010	0.95E-011	-0.21E-010	0.82E-011
64	0.19E-011	0.70E-012	0.16E-012	0.60E-012
72	-0.31E-010	0.94E-011	-0.22E-010	0.82E-011
87	0.59E-012	0.27E-011	0.42E-011	0.22E-011

¹ only MPC data on moment July, 2013;

² MPC data+RTT-150 asteroid observations.

The average uncertainty of the mass estimates decreased by 12% percent

64 ANGELINA

60x53x45km	E-TYPE	0.28	0.07E-12M🌣	4000, 9921, 41858

Perturbed objects for which the mass of the perturbing asteroid 64 had the

least errors		Perturbed	Mass 64
Perturbed Asteroid	-Uncertainty M_☆	Asteroid	M_\$\vec{\vec{\vec{\vec{\vec{\vec{\vec{
9921	0.05E-11	9921,244,42420,4619 MPC +RTT150 data	(0.31±0.49)E-12
244	0.14E-11	9921	(0.46±0.55)E-12
42420	0.16E-11	MPC	
4619	0.39E-11	9921	(-0.02±0.49)E-12
		MPC+RTT150 data	

762 PULKOVA

	Double	F-TYPE	(0.07-1.3)E-12	2M☆	14685
Perturbed object of the perturbing least errors	s for which the m asteroid 762 had	hass d the F	Perturbed Asteroid	Mass _762 M_交	Tikhonov's regularization
- Perturbed - Asteroid	Uncertainly M_☆	14685, 2 50, 2138 MPC 190	2 69228, 269633, 34,143679 00+RTT150 data	(-0.018±1.075)E-12	0.849
14685 269228 269633	0.173E-11 0.284E-11 0.342E-11	14685, 2 50, 2138 MPC 190 14685	2 69228, 269633, 34,143679 00	(-0.215±1.147)E-12 (2.310±1.727)E-12	0.941
50 213834 143679	1.232E-11 1.767E-11 1.799E-11	MPC 14685 MPC+RT	T150 data	(1.763±1.450)E-12	

-

-

790 PRETORIA

	albedo	0.04	P-TYPE	170km	2.6E-12M☆
1	and	VIUT		1 / 01011	

43488

Perturbed objects of the perturbing a	for which the mass asteroid 790 had the	Perturbed Asteroid	Mass _790 M_☆	
least errors				
Perturbed Asteroid	Uncertainly M_🌣	24362, 22217, 43488, 38631, 64220, 63630, 2051, 221406, 33909,	(2.59±0.94)E-12	
24362 22217 43488 38631 64220 63630	0.123E-11 0.262E-11 0.412E-11 0.866E-11 0.955E-11 1.004E-11	 153063 MPC 1928+RTT150 data 24362, 22217, 43488, 38631, 64220, 63630, 2051, 221406, 33909, 152062 	(2.64±0.96)E-12	
2051 221406 33909 153063	1.232E-11 1.459E-11 1.528E-11 1.548E-11	MPC 1928 43488 MPC+RTT150 data	(0.34±3.08)E-12	
		43488 MPC	(0.88±4.12)E-12	

CONCLUSIONS

Database of accurate topocentric positions and magnitudes for specially selected 96 perturbed asteroids that have close encounters with other asteroids were obtained. Mean accuracies of 84mas in right ascension and 68mas in declination were achieved for well-exposed images up to R –magnitudes (10-17.5) which degrade to about 200mas for the faintest asteroids R 20.5.

We don't present new masses here, it's only attempt to show important adding modern observations in fitting process.

These data will be useful to combine with very good accuracy but shottime GAIA data for accurate mass determinations.

THANK YOU!

Processing and Astrometric Reductions

External test of accuracy of the proper motions of catalogs UCAC4 (top) and PPMXL(bottom)