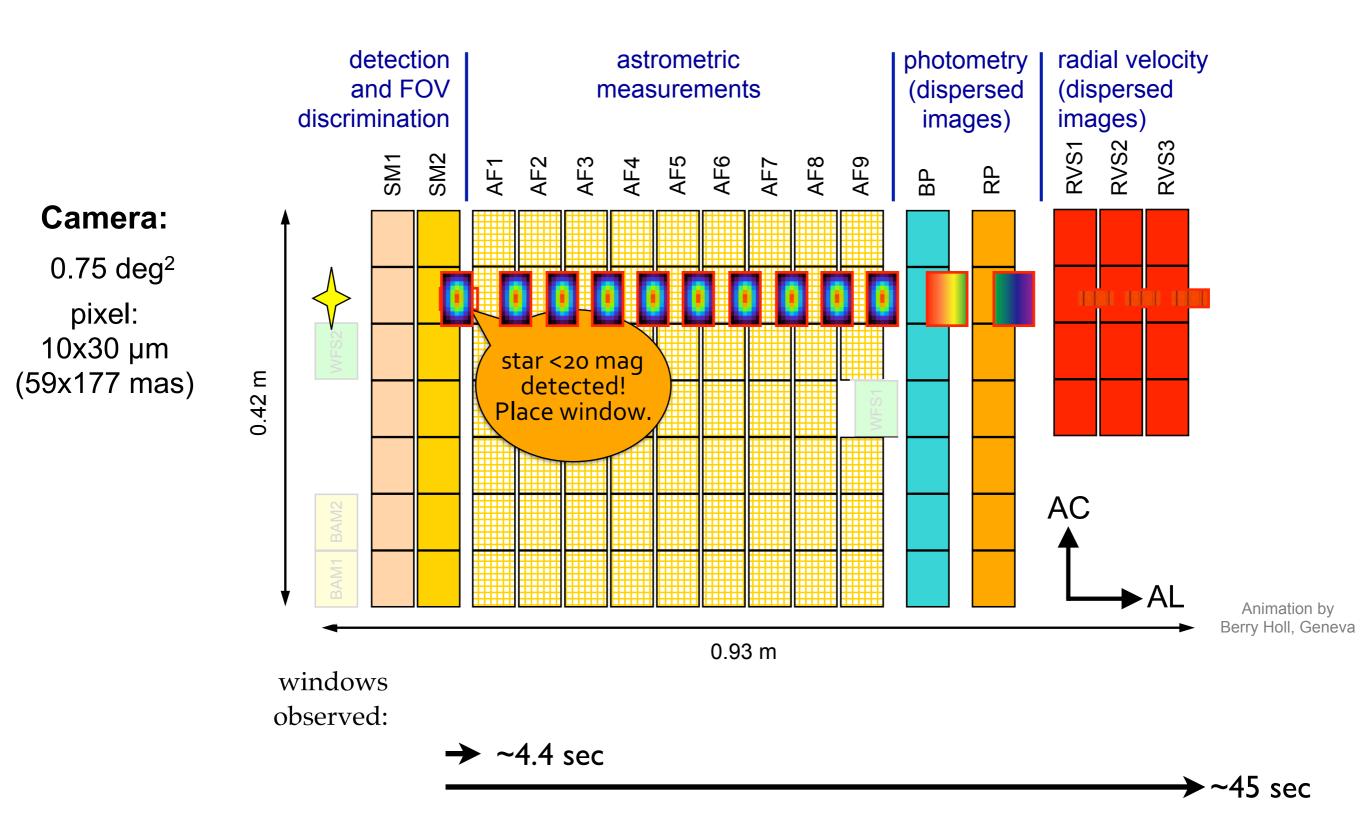
GAIA AS A TRANSIENT SURVEY

₩

Łukasz Wyrzykowski

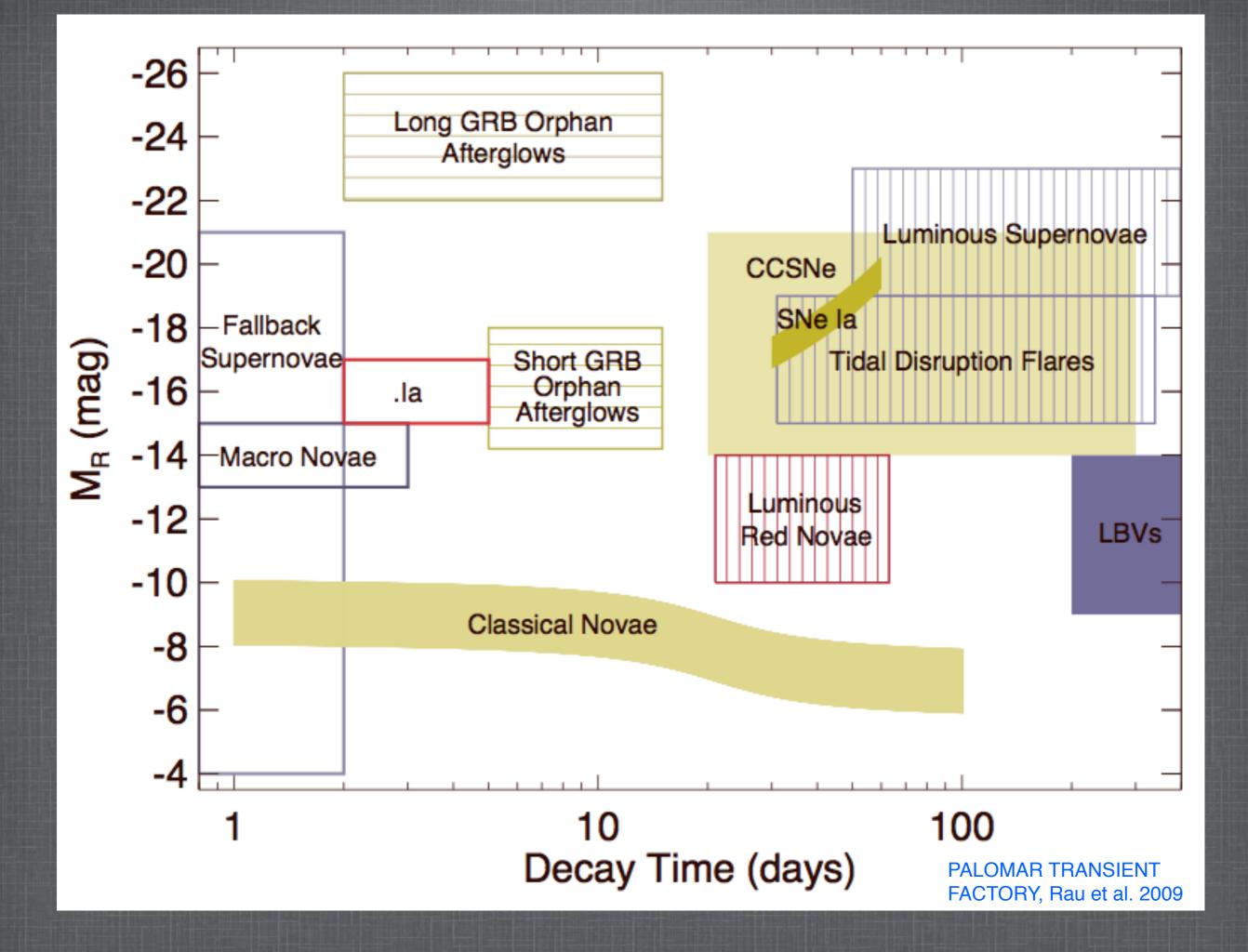
(pron: Woocash Vizhikovsky) Warsaw University Astronomical Observatory, Poland Institute of Astronomy, University of Cambridge, UK

PEOPLE INVOLVED

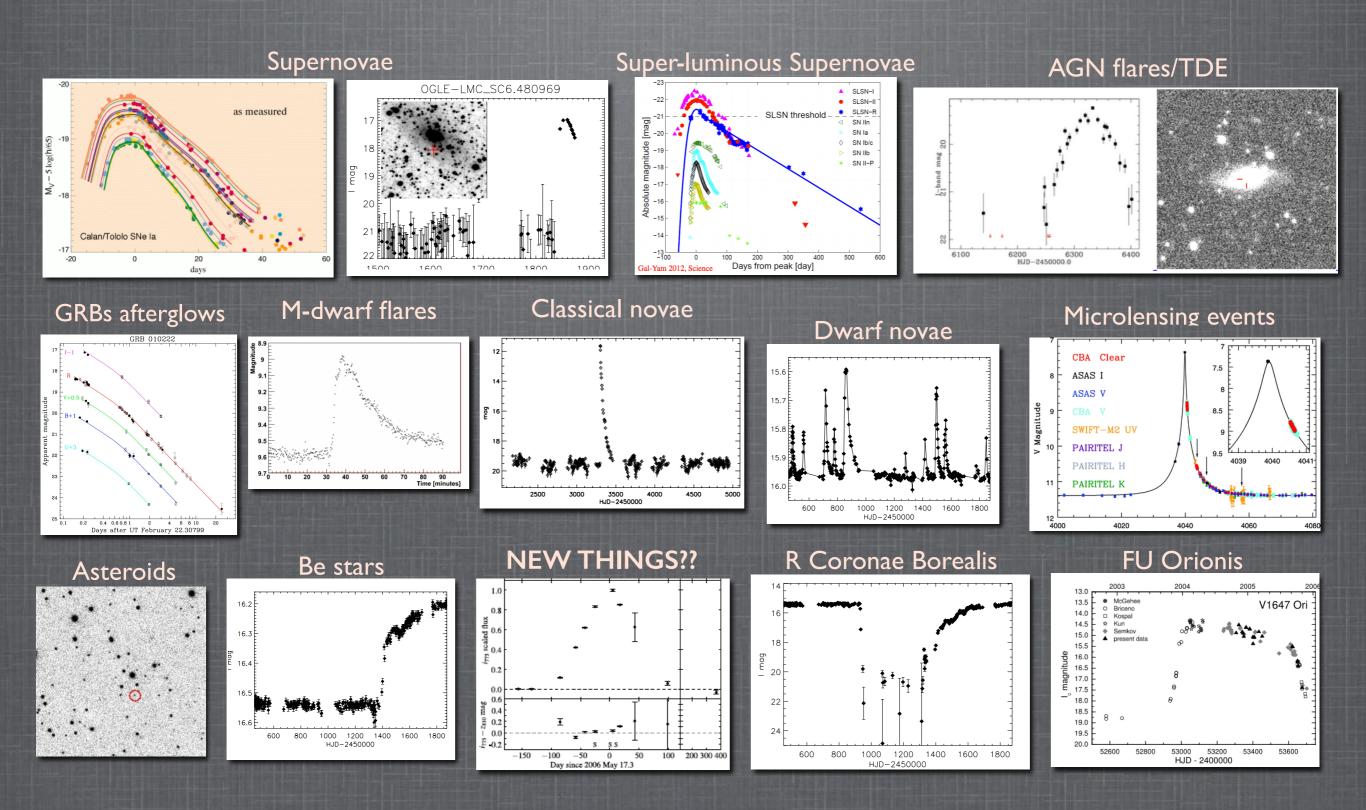

Cambridge, UK:

Simon Hodgkin Guy Rixon Nadia Blagorodnova Heather Campbell Morgan Fraser Sergey Koposov

Warsaw, Poland:


Zuzanna Kostrzewa-Rutkowska Krzysztof Ulaczyk Michał Pawlak Krzysztof Rybicki OGLE team

SINGLE GAIA OBSERVATION = TRANSIT



GAIA AS A TRANSIENT SURVEY

	Gaia	Catalina Sky Survey	PTF	OGLE-IV (Magellanic System only)	LSST (from 2020??)
deg	≈ 1230	I 200	1000	150	5000
Avg Cadence	≈ 30 days	14 days	5 days	5 days	4 days
Limiting mag	20 (21?)	19.5	21	21	r=24.7
f	all sky	0.6	0.2	0.02	<0.48

TRANSIENTS ZOO

SUPERNOVAE IN GAIA

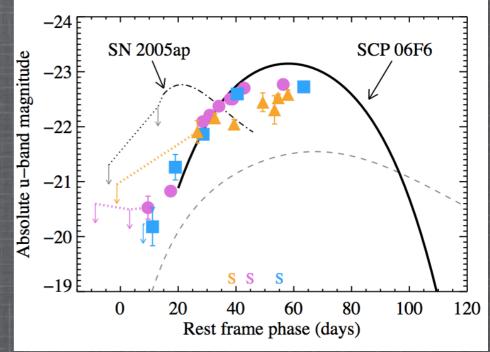
• <u>6000</u>

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc


Local supernovae calibration of the SNe cosmology projects.

Ultra-luminous Surpernovae:

curves, U band magnitude reaching -23, host galaxies faint, e.g. Quimby et al. (2010), link to the relationship between GRBs and SNe.

- Large "unbiased" samples of core-collapse supernovae and progenitors
- **Supernovae in galaxy cores:** metallicity, homogenous sample, Gaia's superb astrometry in use

OTHER INTERESTING TRANSIENTS

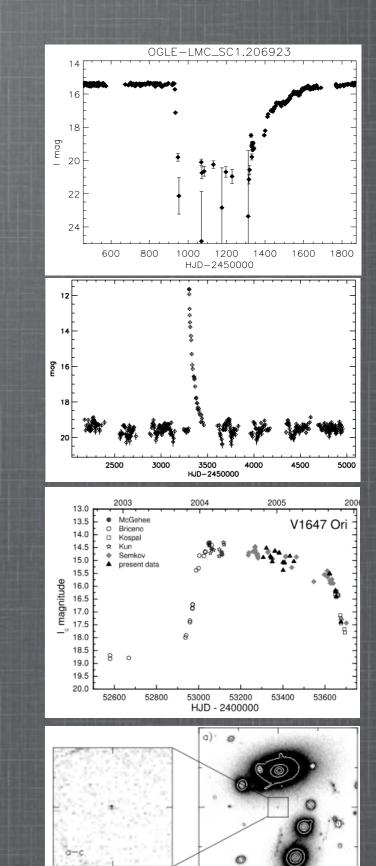
RCrB-type stars

- carbon stars, emitting sooth
- rare class (~50 known), but 3000 expected
- can drop by 8 mag in a week perfect time-scale for Gaia

GRB Afterglows

- very short duration events - expecting just a few

Classical and recurrent novae

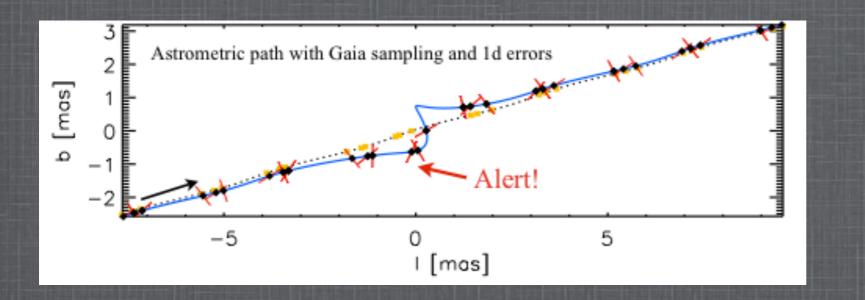

- potential distance indicators
- can be detected in MW and other galaxies
- large amplitudes, wide range of time-scales

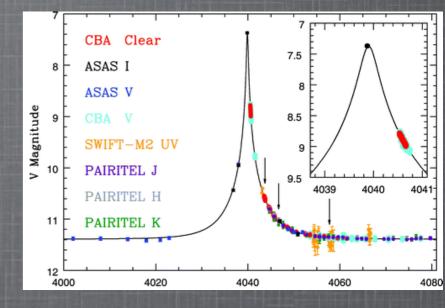
FU Orionis/EX Lupi

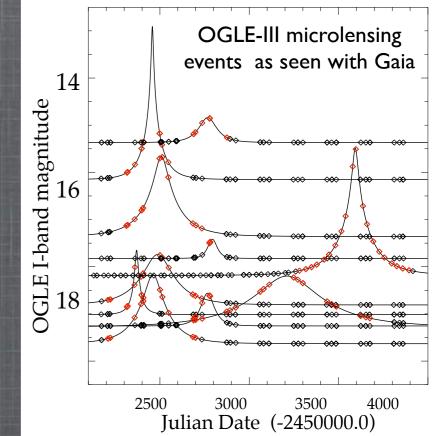
- unstable pre-MS stars
- rare class (few known)
- several magnitudes up, long time-scales
- X-ray variability
- FU Ori repeats every ~40 years!

Gravitationally lensed distant supernovae

- unique uniform all-sky monitoring
- high redshift SNe rates, distances, H0

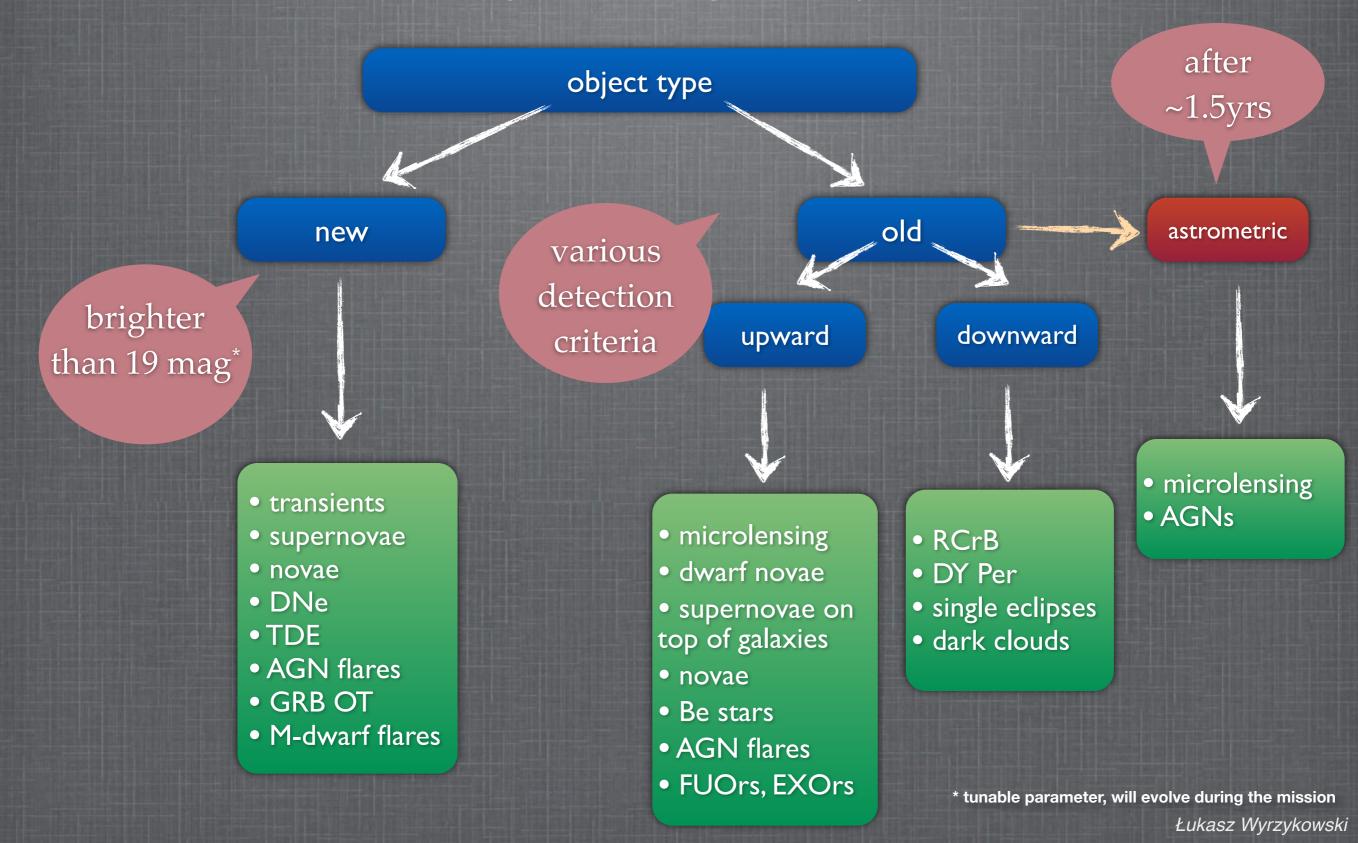

JD50086

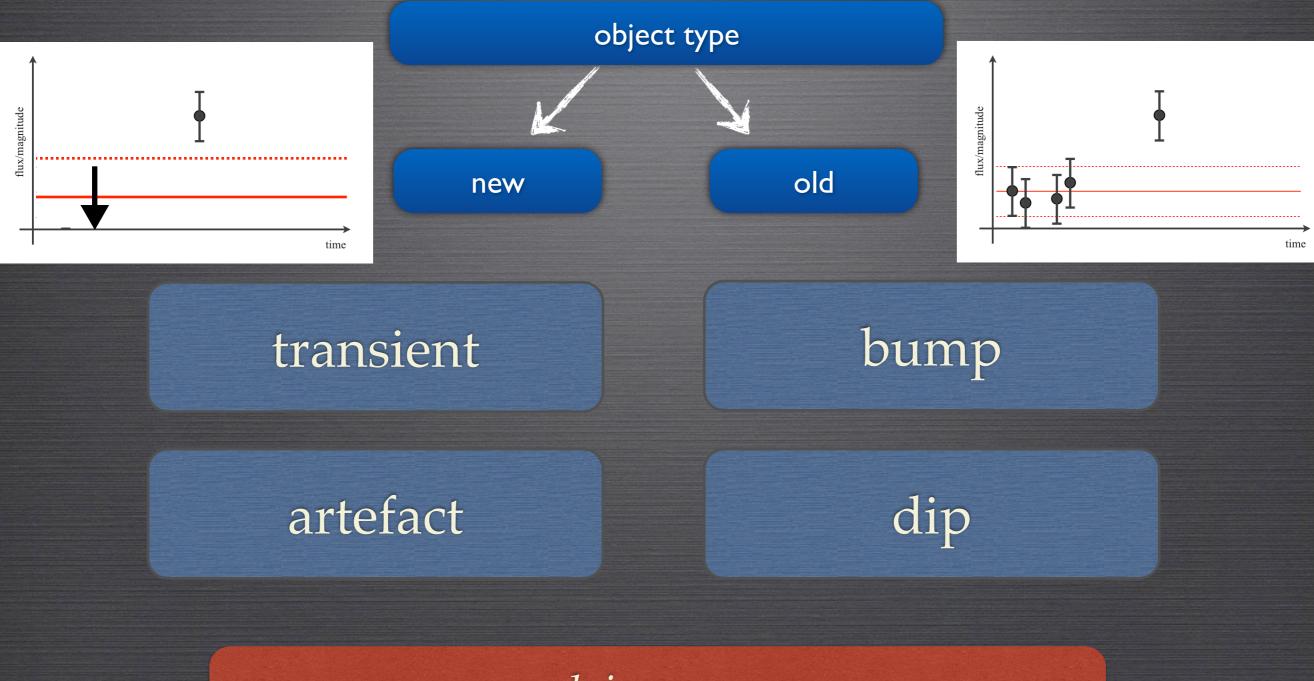

MICROLENSING IN GAIA


7,500 events expected during the mission, mainly in the Galactic Bulge but many lost (crowding) 15,000 astrometric events (higher optical depth) photonetric alerts expected on 1000+ events, mainly long - the most interesting ones (nearby or massive lens)

astrometric microlensing - unique opportunity with Gaia!
 measure <u>masses</u> and <u>distances</u> of the dark lenses

- detect <u>black-holes</u>: astrometric deviation of ~few mas





ANOMALY DETECTION SYSTEM

running in Cambridge on daily basis

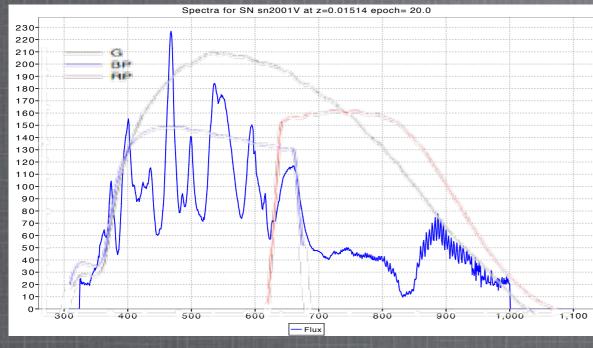
ANOMALY DETECTION SYSTEM Classification

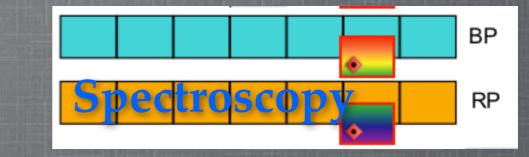
work in progress: expand with more sophisticated methods

ANOMALY DETECTION SYSTEM Cross-match with archives

work in progress: fully-automatise the cross-match

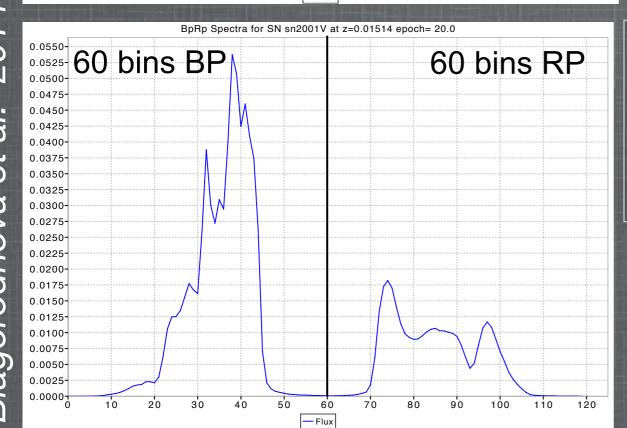
GAIA SPECTRA

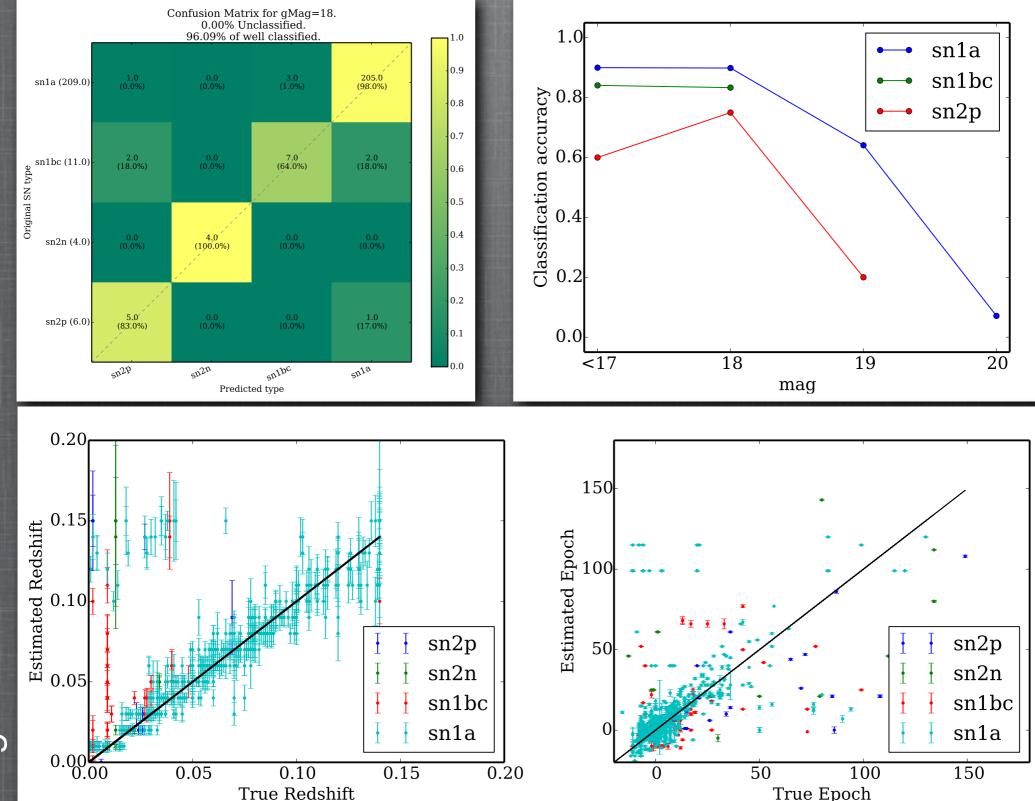



On the CCDs

- two low resolution spectrographs, R~100

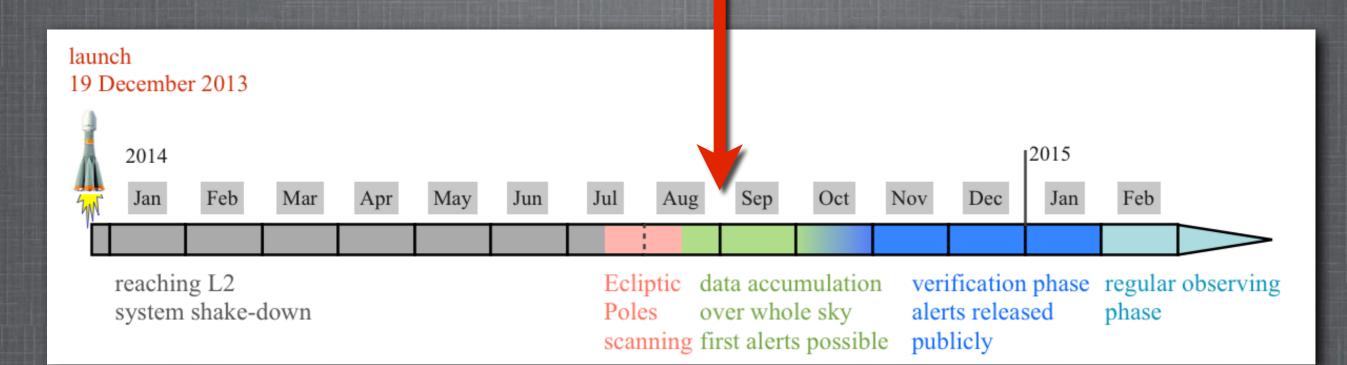
Measurements - I dimensional for stars G>13 mag


CLASSIFICATION OF ALERTS Spectral classification - the ``secret" power of Gaia



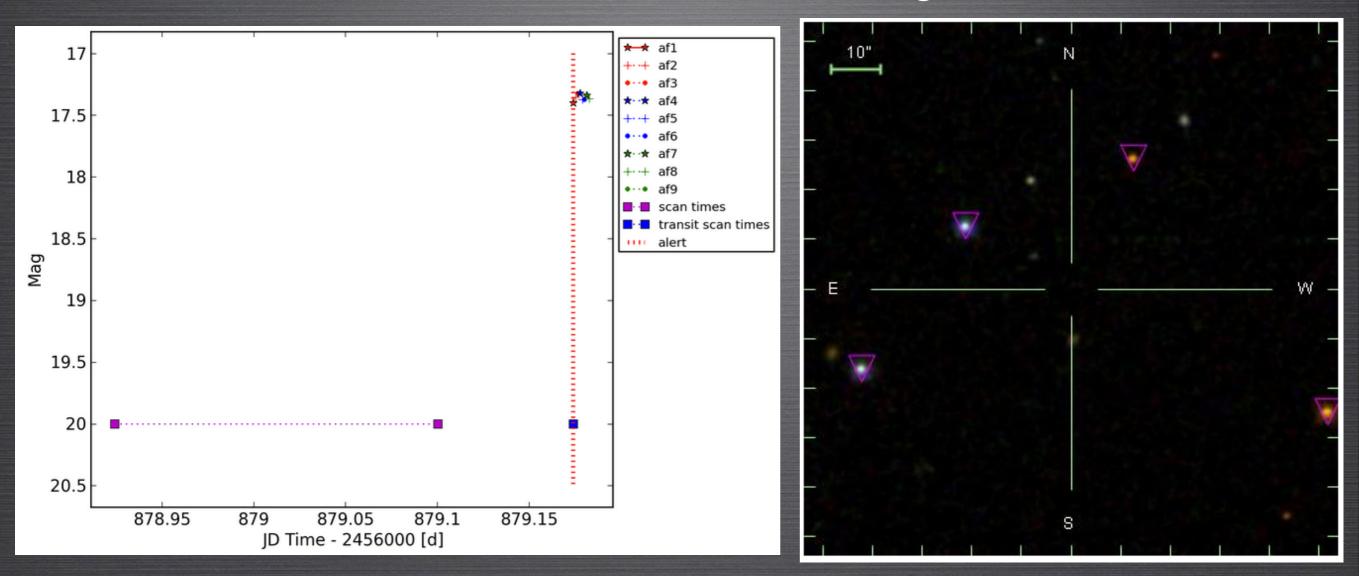
transients typing – low false-positives rate!

Gaia is equipped with low-resolution (R~100) spectrographs. They will allow for classifying transients into types and for supernovae they will provide estimates for redshift and epoch based on just a single observation!


CLASSIFICATION OF ALERTS Spectral classification - the ``secret" power of Gaia

Blagorodnova et al. 2014

YEAR 1


First alerts!

NEW SOURCE ALERT EXAMPLE

Alert:

Finding chart (SDSS):

"sister" alerts found nearby

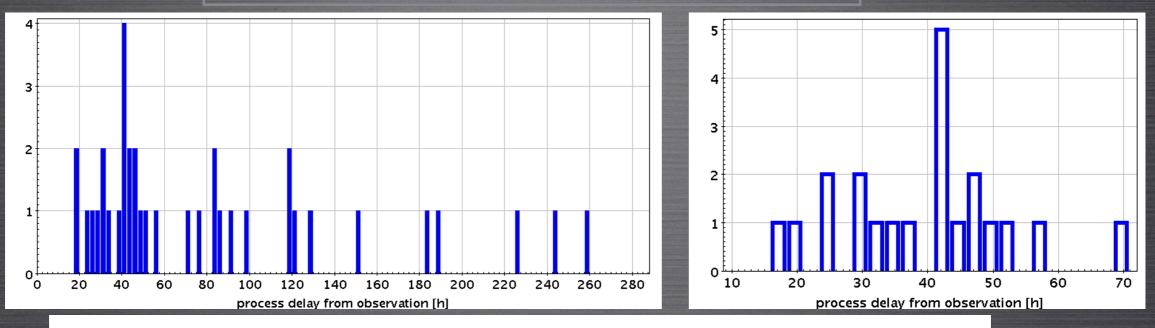
ecliptic coordinates = 1.810217, -0.698089 Identified as planetoid 9197 Endo (thanks to Francois Mignard!)

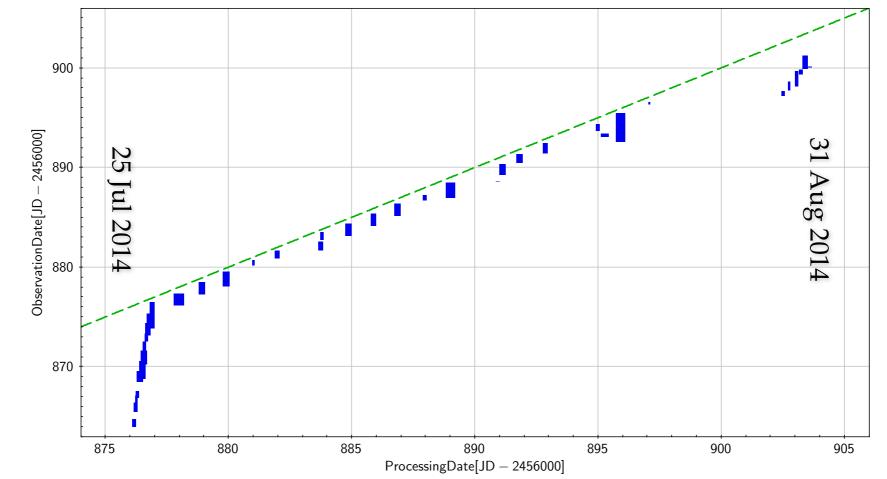
raw Gaía data!

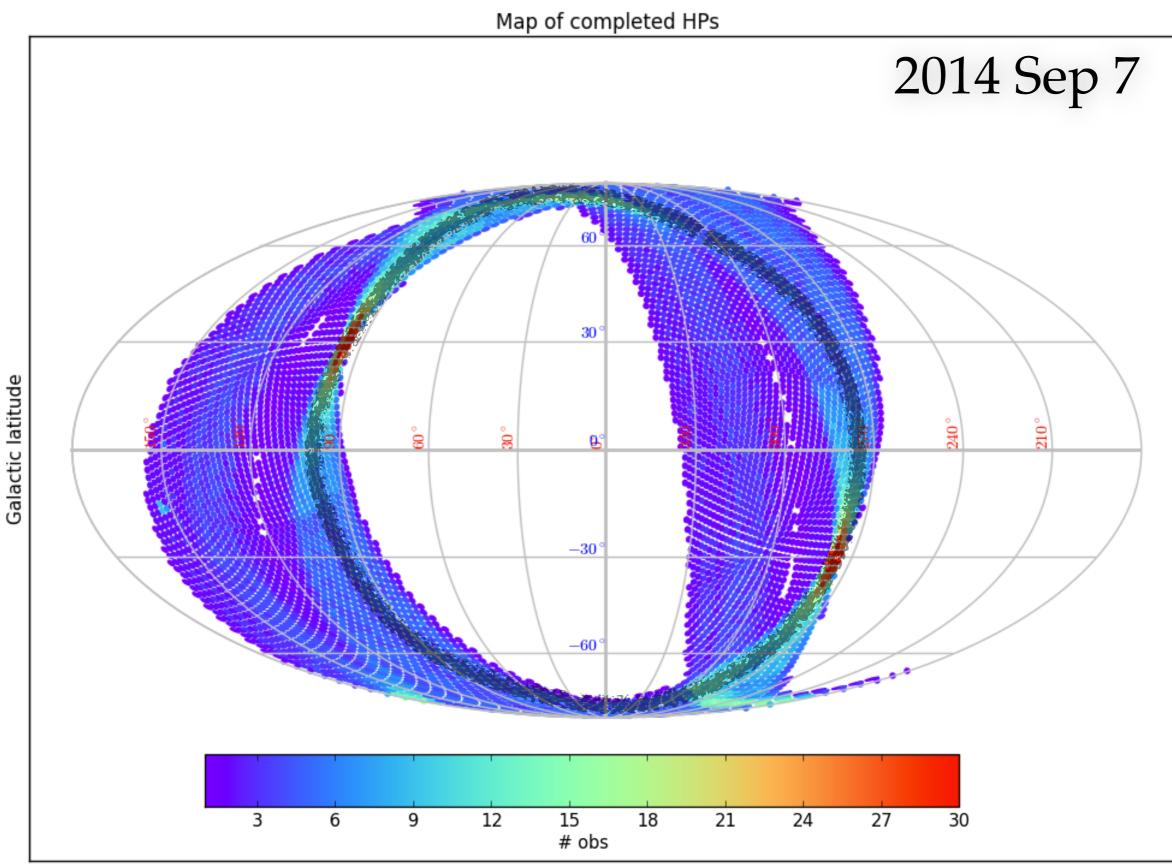
ASTROMETRY matching Gaia to stellar catalogues

2

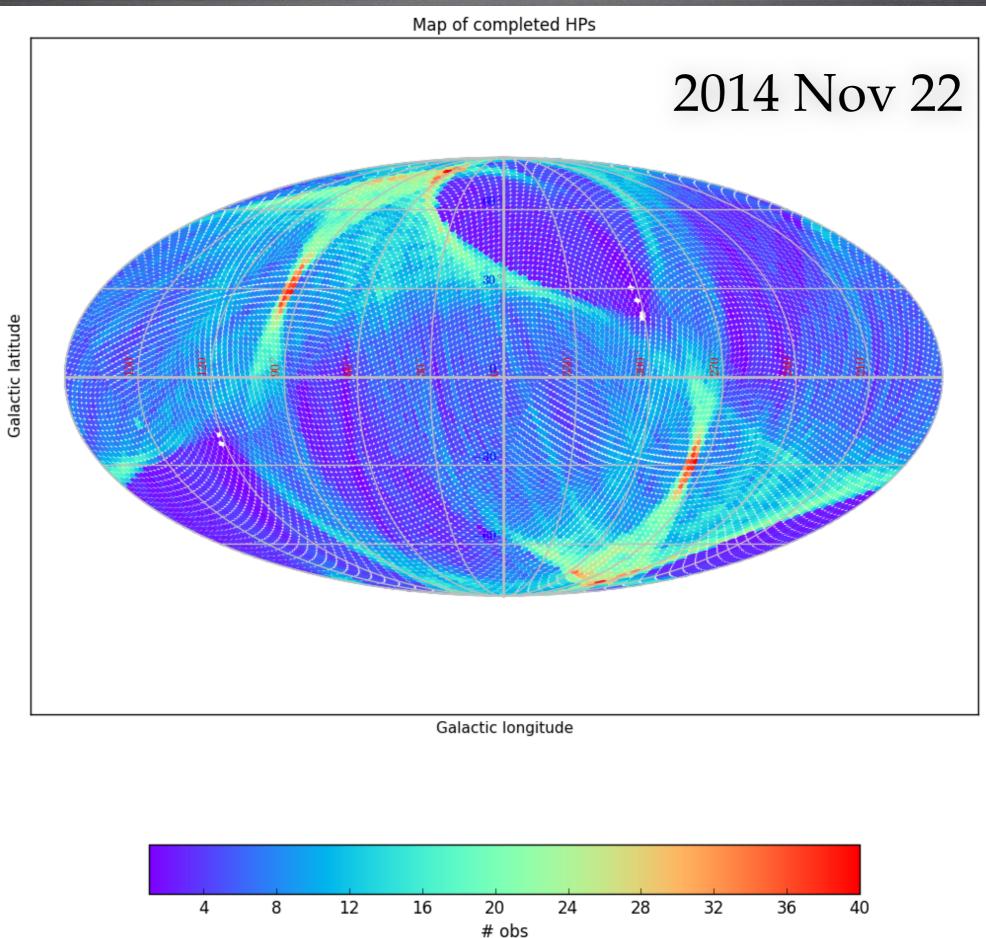
4

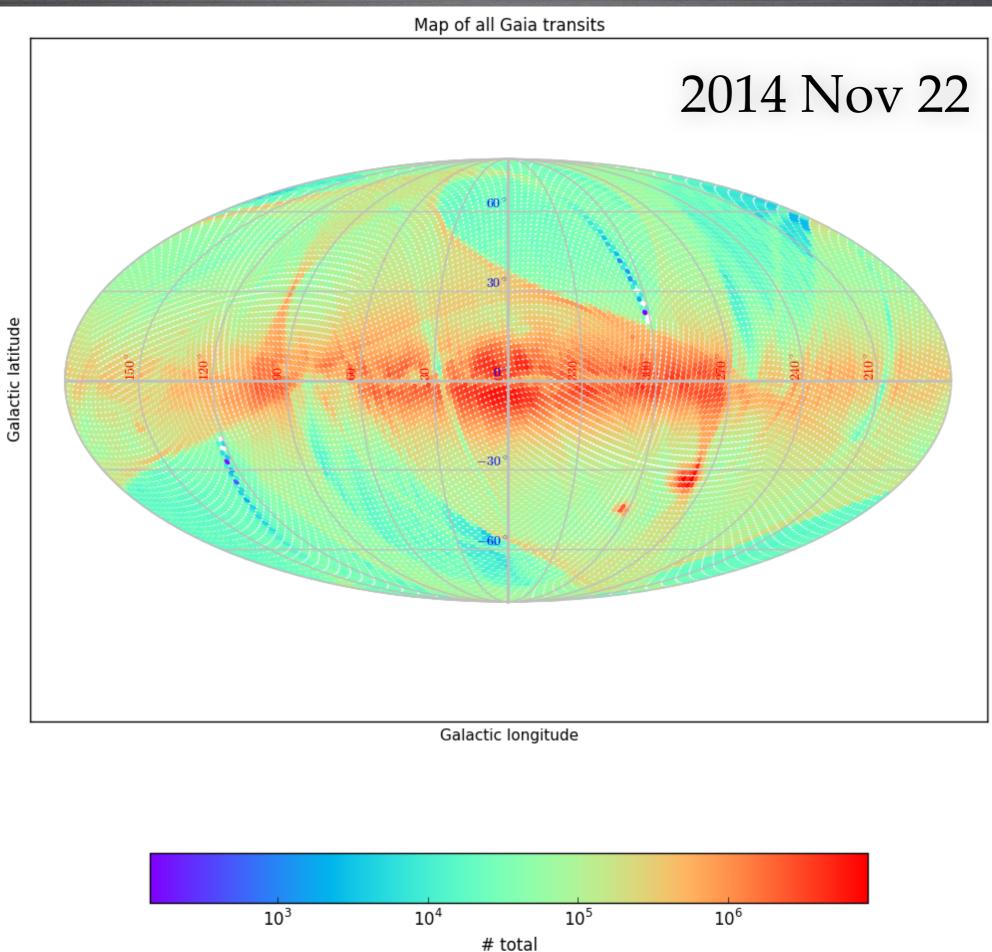

before mid-November 2014


2 0 -2 -4 -2 0 -2 2 -4 2 -4 4 0 arcseconds 1200000 1050000 900000 2 750000 0 600000 450000 -2 300000 150000 -4 -2 0

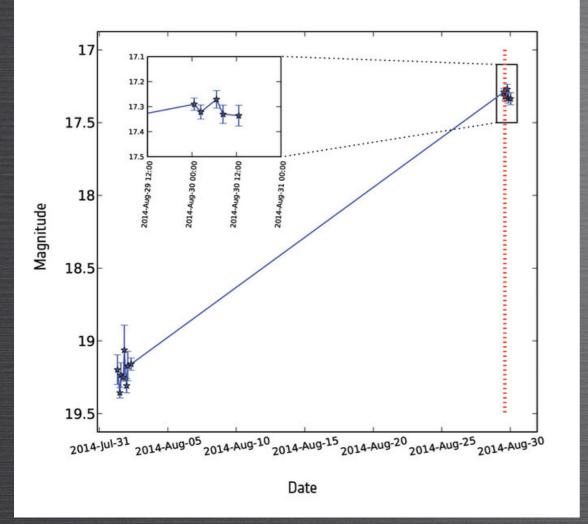

from mid-November 2014

-4

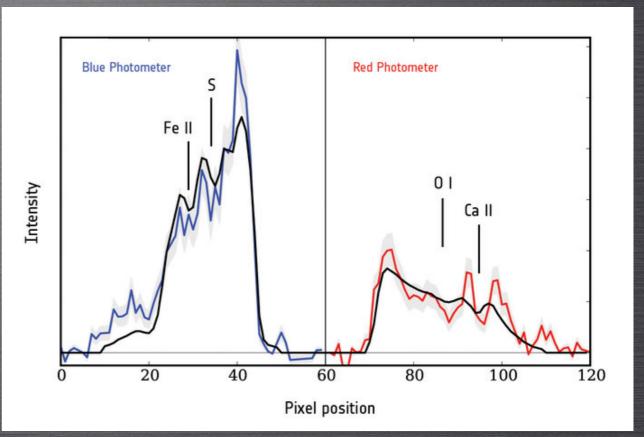

delay between observation and end of processing



Galactic longitude



WH	[ERE GAIA]	IS PC	DINTING?
htt	p://gaia.esac.esa.in	<u>t/tomc</u>	at_gost/gost/
Observation Forecast Tool	gaia Query Results	Versions	
	Events forecast submit form Enter source name [resolved by Simbad +]:		
	Retrieve position Or Choose your CSV file containing the target positions:		Select an observation period FROM Lookup is by default from 26/09/14 onward + 1 year
	Choose File No file chosen		2014-09-26T00:00:00
	(first 3 columns name, alpha, delta in degrees) Center as angular position in Equatorial coords. RA:		TO:
	0.0		2015-09-02T00:00:00
	[Deg or h:m:s] DEC:		
	0.0		Submit for events forecast
	[Deg or d:m:s]		I have read the warnings below and agree to continue


source(0) seen 3/4 (SM1/SM2) times


														:< -6 m	onthe	3	+6 m	onth	s >>																						
01	02	03	04	05	06	07			01	02	03	04	05						01	02	01	02	03	04	05	06	07				01	02	03	04							01
08	09	10	11	12	13	14	06	07	08	09	10	11	12	03	04	05	06	07	08	09	08	09	10	11	12	13	14	05	06	07	08	09	10	11	02	03	04	05	06	07	08
15	16	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18	09	10	11	12	13	14	15
22	23	24	25	26	27	28	20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25	16	17	18	19	20	21	22
29	30						27	28	29	30	31			24	25	26	27	28	29	30	29	30	31					26	27	28	29	30	31		23	24	25	26	27	28	
		Septe	mber -	2014					Oct	tober –	2014					Nover	mber –	2014					Dec	ember -	- 2014					Janu	Jary – 2	2015					Febr	ruary –	2015		

FIRST CONFIRMED SN FROM GAIA

Gaia14aaa discovered on 30 Aug 2014

Found based on BPRP spectrum match!

Confirmation image from Liverpool Telescope

raw Gaía data!

OTHER CONFIRMED TRANSIENTS

Gaia14abz - SN Type Ia at z=0.059 (Asiago) Gaia14acg - SN Type Ia at z=0.031 (Asiago) Gaia14act - SN Type II at z=0.027 (Asiago) Gaia14acz - SN next to SDSS galaxy at z=0.105

Gaia14aat - Dwarf Nova (Liverpool Telescope)

Gaia Verification @ WHT (Rixon et al): Gaia14aae - AM CnV, a'ka ASASSN-14cn Gaia14aaf - CV Gaia14aai - M flare Gaia14aau - M Flare Gaia14abg - CV Gaia14abg - M Flare Gaia14abr - M Flare

ALERTS VERIFICATION PHASE

http://gaia.ac.uk/selected-gaia-science-alerts

Home Mission Gaia UK Science Alerts News Events Education Multimedia Blog

You are here: Home » Gaia Photometric Science Alerts: Validation Phase

Gaia Photometric Science Alerts: Validation Phase

Welcome! We have begun the experiment to validate our AlertPipe software. This software discovers, classifies and publishes Gaia Photometric Science Alerts. We are right at the beginning of the journey, and invite you to join in.

On this web page we are publishing coordinates and photometry for a manually selected subset of alerts as part of our validation process. These sources and the contents of the webpages come with a number of caveats (details below). The methodology used to find the alerts is also described below.

If you do measure any data for these targets, then please let us know (via <u>Contact page</u> and choose the category: Science alerts), and if possible we'd like to get a copy of your data (e.g. via ftp) for inclusion in our verification analysis together with data from collaborating observatories: <u>http://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki/index.php/Working_groups</u>. Anything we use will be credited. Similarly, if you do publish any ATELS, articles, etc, then please do let us know.

If you publish any results based on these Gaia discoveries, we would appreciate an acknowledgement along the lines of: "We acknowledge ESA Gaia, DPAC and the Photometric Science Alerts Team (<u>http://gaia.ac.uk/selected-gaia-science-alerts</u>)".

ALERTS VERIFICATION PHASE

http://gaia.ac.uk/selected-gaia-science-alerts

Name 🚽	UTC timestamp	RA	Dec	AlertMag	HistMag	HistStdDev	Class	Comment
Gaia14ade	2014-11- 11 08:25:59	357.71672	28.98319	17.78	19.30	0.13	unknown	very blue star: CV?
Gaia14add	2014-11- 11 04:44:38	182.15532	11.99387	17.70	18.71	0.04	unknown	QSO at z=0.36. Brightening of 1 mag
Gaia14adc	2014-11- 06 02:55:24	316.06927	51.32732	15.92	18.10	0.06	unknown	Very red spectrum, possible Mira
Gaia14adb	2014-10- 29 00:13:52	181.30013	21.83836	18.61	20.06	0.06	unknown	Near SDSS galaxy SDSS J120512.03+215018.1 with photometric redshift z=0.05
Gaia14ada	2014-09- 10 01:32:01	208.40506	34.82615	18.73	19.68	0.05	unknown	blue star, now faded, ROSAT source within error, CV?
Gaia14acz	2014-11- 01 23:47:20	211.56593	36.38459	18.96	Not known	Not known	unknown	blue in BP/RP; 5 arcsec from SDSS galaxy z=0.105
Gaia14acy	2014-10- 26 21:01:38	10.16959	-28.95650	18.41	19.63	0.06	unknown	Galaxy (2dFGRS TGS287Z263), small offset?
Gaia14acx	2014-10- 27 09:33:08	240.01542	33.18725	15.24	20.20	0.02	CV	Known Dwarf Nova: VW CrB (Blue SDSS star r=19.9, very blue in BP/RP)
Gaia14acw	2014-10- 24 03:35:31	37.28835	-32.96673	17.61	18.39	0.04	unknown	
Gaia14acv	2014-10- 25 07:06:23	182.44766	29.73023	18.40	18.97	0.03	unknown	very blue SDSS star at r=19.2
Gaia14acu	2014-10- 26 00:49:49	202.47026	31.90307	18.23	19.18	0.08	unknown	SDSS star at r=20
Gaia14act	2014-10- 26 06:05:30	185.09378	28.41434	18.43	Not known	Not known	SN II	offset from SDSS galaxy;last non-det 2014-07-31;blue BPRP spectrum

ALERTS VERIFICATION PHASE Gaia Follow-Up Network for Transient Objects = Gaia-FUN-TO

why?

• check if an alert is real

• to weed out errors from the pipeline

• to classify (phot+spec) or confirm BP/RP classification

open to everyone !

requirements for follow-up:

- ideally: fully robotic telescope
- rapid response (<24h)
- automated photometric processing
- data submission to common repository

You can still join us! email: LW @ astrouw.edu.pl

ACTIVE FOLLOW-UP PARTNERS

NORTH

Loiano, Italy, 1.5m APT2, Italy, 0.8m **TNT**, Italy, 0.72m Mercator, La Palma (Swiss Time), 1.2m Konkoly, Hungary, 1m, 0.6/0.9/1.8m, 0.5m PIRATE, Mallorca (Open University), 0.43m pt5m, La Palma (Sheffield), 0.5m Vienna, Austria, 1.5m ASV, Serbia, 0.6m Tubitak, Turkey, 1.5m, 1m, 0.6m Wroclaw, Poland, 0.6m Ostrowik, Poland, 0.6m Italian Supernova Project, Italy, 0.53m Wise, Israel, 1m, 0.7m, 0.45m OHP, France, 1.2m

SOUTH

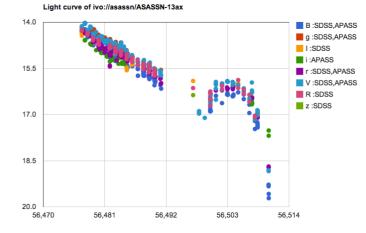
Swiss Euler, La Silla, 1.2m Danish/Czech, La Silla, 1.54m GROND, La Silla, 2.2m SAAO, South Africa, 1.9m, 1m *OGLE, La Campanas, 1.3m MOA, New Zealand, 2m*

http://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki/index.php/Status_of_the_verification_partners_{Wyrzykowski}

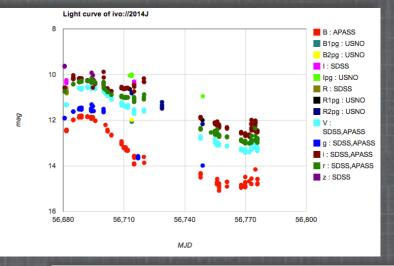
FOLLOW-UP CALIBRATION SERVER

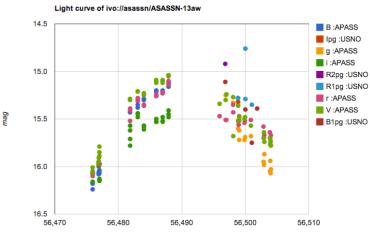
for Gaia Science Alerts Photometric Follow-up

GAIA SCIENCE ALERTS UPLOADING THE FOLLOW-UP DATA Cambridge Photometric Calibration Server http://gaia020.ast.cam.ac.uk:5000 (temporary site) manual Gaia Science Alerts Follow-up × http://gsaweb.ast.cam.ac.uk/followup **Follow-up Data Uploading Form** Sponsored by the National Science Foundatio Browse Event Streams | Browse Skyalert Feeds | my Feeds and Alerts Portfolic ivo://nvo.caltech/voeventnet/catot#1111181120424127237 Event ID: ivo://nvo.caltech/voev From the CRTS stream. Catalina Real-time Transient Survey Hash tag: 536c Position is 118.19689,12.37233 ± 0.0012 This portfolio initiated 2011-11-18 05:32:05 MJD OBS: 55772.332731 Also available is the JSON re of this portfolia Łukasz Wyrzykowski & Sergey Koposov Exposure time: 300 Institute of Astronomy, University of Cambridge, UK Filter: v last update: 30 July 2012 Your unique access name/pass Sextractor catalog: Choose File 110621 V4.cat (Submit) (provided by Cambridge) **RESULT OF CALIBRATIONS** REQUIRED SEXTRACTOR FIELDS: Server # ALPHA_J2000 Right ascension of barycenter (J2000) [deg] # DELTA_J2000 Declination of barycenter (J2000) [deg] EventId : ivo://nvo.caltech/voeventnet/catot#1106101350644123477 then, either: # MAG_APER Fixed aperture magnitude vector [mag] Ra: 214.61884 best matching filter (data will be stored as in this filter) # MAGERR_APER RMS error vector for fixed aperture mag. [mag] Dec: 35.71373 N follow-up Ra Dec Filter: SDSS / r < calibrated magnitude # MAG_AUTO Automatic aperture magnitude [mag] 9,71914 55959 Magnitude: 18.1738541917 +/- 0.0142 mag 🛩 # MAGERR_AUTO RMS error for automatic aperture mag. [mag] 21.57691 ZP: -28.6588541917 < 19.69022 zero point Scatter: 0.248369741493 mag Plots: SDSS g ZP = -29.51 σ = 0.34 f_c SDSS + 7P = -28.66 = 0.25access can be fully automatised software developed by Sergey Koposov, IoA


22

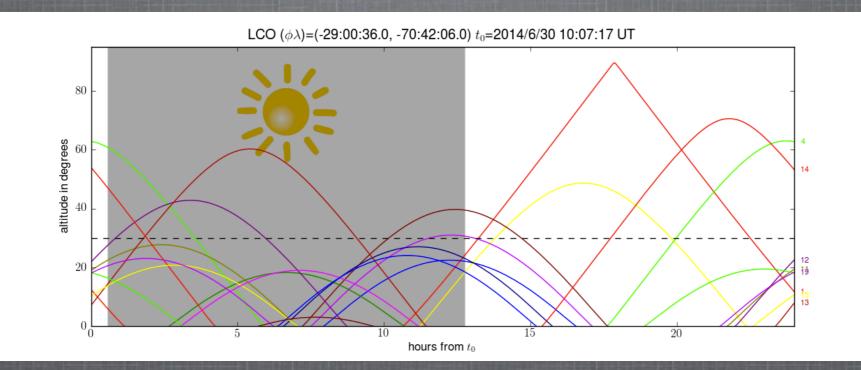
ALERTS VERIFICATION PHASE


About 15 observatories, >3000 observations of about 50 targets in 2013/14

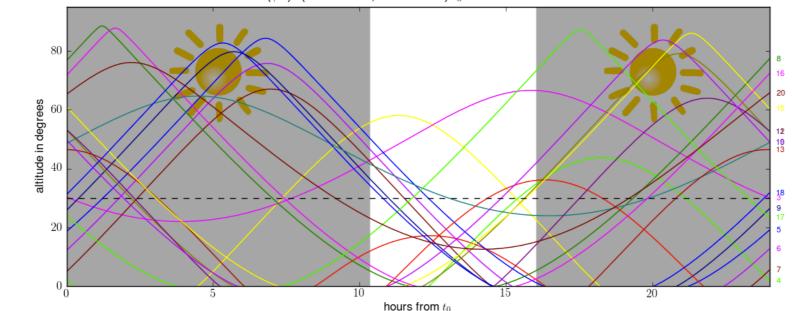

												F
id	ivorn	published	ra	dec	nfollowup	LC	data					
25463	ivo://asassn/ASASSN-14ae	2014-02- 03 13:10:42	167.1664	95 34.097972	81	LC	data					
25462	ivo://2014J	2014-01- 24 01:25:44	148.9259	69.6740444	313	LC	data					
25461	ivo://iptf/iptf13ebh	2013-11-	35 id	Name					Longitude	Latitude	Observations	
		14 15:40:20	18	admin					None	None	6	8
25460	ivo://nvo.caltech/voeventnet/catot#1311081150044101824	2013-11-	9. 49	Aleks Scholtz James	Gregory Tele	scope	0.94 St.Andro	ews,UK	-2.8	56.3	0	
		08 22:00:17	16	Alex Ball-SMARTS1.	3				70.815	-30.16527778	145	
25459	ivo://nvo.caltech/voeventnet/catot#1311061180184119159		5C 1	AnonymousFollowUp	Account				0.0	0.0	0	8
		08 02:08:10	9	AshishMahabalEuler	LaSillaChile				-70.73	-29.257	28	8
25458	ivo://nvo.caitech/voeventnet/catot#1311061010294118517		81 7	AshishMahaballGOl	ndia				73.666667	19.083333	0	I
		08 01:25:31	10	AshishMahabalP60					-116.863889	33.355833	0	
25457	ivo://nvo.caltech/voeventnet/catot#1310310091164130002	2013-11- 04	32 8	AshishMahabalSAA	01.9SA				20.811642	-32.378961	0	I
		21:35:15	15	AshishMahabal-SM/	ARTS1.3				70.815	-30.16527778	0	I
25456	ivo://nvo.caltech/voeventnet/catot#1311021400124123088	2013-11- 02	42 27	BAS NAO 2m Rozhe	n				24.74	41.7	0	l
		22:33:32	28	BAS NAO 60cm Roz	hen				24.74	41.7	0	I
25455	ivo://nvo.caltech/voeventnet/catot#1310271400304156612	2013-10- 30	10 29	BAS NAO Rozhen 50)/70cm Schmi	dt			24.74	41.7	0	l
		10:03:25	30	Belogradchik, AO, 6	0cm, Bulgaria				22.67	43.62	0	l
25454	ivo://nvo.caltech/voeventnet/catot#1310251400954170028	2013-10- 29	³⁴ 14	Colin Snodgrass, Ro	boNET				0.0	0.0	0	
		21:57:36	31	Gabor Marschalko, I	Konkoly, Piszk	esteto	Mountain Sta	ation, Hungary	19.8953	47.9181	60	I
25453	ivo://nvo.caltech/voeventnet/catot#1310281380044109757	2013-10- 29	¹⁰ 5	GiuseppeAltavillaAP	T2Catanialtaly				14.974722	37.693056	0	Į
		21:33:02	3	GiuseppeAltavillaAsi	agoObservato	ryltaly			11.571375	45.843389	0	I
25452	ivo://nvo.caltech/voeventnet/catot#1310231380084126804	2013-10- 23	²⁷ 2	GiuseppeAltavillaLoi	anoObservato	ryitaly			11.333889	44.259167	0	
		22:42:02	4	GiuseppeAltavillaTN	TTeramoltaly				13.733333	42.6575	0	I
25451	ivo://asassn/ASASSN-13dl	2013-10- 14	1 6	GiuseppeAltavillaTop	poNaplesItaly	/			15.463333	40.817778	0	i
		08:06:23	43	Giuseppe Leto APT2	Catania				14.974722	37.693056	4	l
25400	ivo://junk/test	2013-10- 09	26	Goran Damljanovic,	ASV, Serbia				21.55	43.15	201	i
		10:49:22	36	Heather Campbell					0.0	0.0	0	I
25396	ivo://asassn/ASASSN-13dd	2013-09-	10 41	Irek Khamitov T100					2.02222	36.825278	38	l
			42	Irek Khamitov T60					2.02222	36.825278	10	
1			34	Krzysztof Ulaczyk, C	strowik, Wars	aw			21.42	52.08972	52	
*	WPLI		33	Krzysztof Ulaczyk, te	est account				0.0	0.0	0	
*	WPII Time-domain		24	Lukasz Wyrzykowsk	i, OGLE, Las (Campa	nas		-70.7	-29.2	0	
	lime-domain		23	Milan Bogosavljevic,	Astronomical	Station	Vidojevica 6	0cm, Serbia	21.555666	43.140166	0	
	astronomy		22	Montarrenti Observa	atory, Siena, Ita	aly			11.18	43.23	22	
ND	ICON astronomy											

OPTICON

MJD



MJD


vski

ALERTS VERIFICATION PHASE Follow-up planning for the network of telescopes

http://www.astrouw.edu.pl/~kulaczyk/ephem/

Loiano ($\phi \lambda$)=(44:16:00.0, 11:19:00.0) t_0 =2014/6/30 10:07:17 UT

Tool by Krzysztof Ulaczyk

WPII Time-domain astronomy

GAIA SCIENCE ALERTS WORKSHOPS

2013 - 2016 Gaia Time-domain Photometric Follow-up supported by OPTICON, **OPTICON** WP11: Time-domain astronomy (HQ: Warsaw)

Archive of slides and videos: http://www.ast.cam.ac.uk/ioa/wikis/gsawgwiki