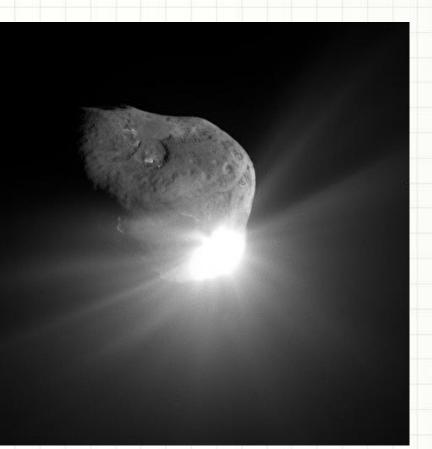
# **ASPECTS OF EVACUATING A NEO** IMPACT AREA

Dr.-Ing. Christian Gritzner, Wirtsch.-Ing. Kai Duerfeld

AsteRisk Workshop, Observatoire de Paris, Meudon

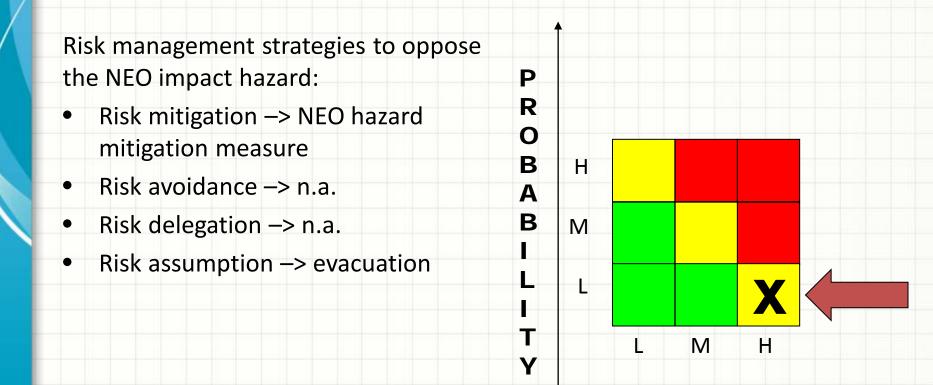
June 28<sup>th</sup> 2011






Les Editions Albert-René/Goscinny-Uderzo

### **Overview**


- 1. NEO Hazard Mitigation Methods
- 2. Reasons for Evacuation
- 3. Costs and Risks of Evacuation
- 4. Conclusions



NASA/JPL-Caltech/UMD

Aspects of evacuating a NEO impact area, C. Gritzner, K. Duerfeld

# **NEO Hazard Mitigation Methods**



#### CONSEQUENCE

# **NEO Hazard Mitigation Methods**

NEO impacts are the only major natural catastrophes that can be predicted <u>and</u> avoided (compared to earthquakes, tsunami, volcanoes)!

Basically there are two NEO hazard mitigation strategies:

- Destruction
- Deflection

#### Basic problems with these NEO mitigation methods are:

- Destruction
  - Resulting fragments may be large enough to still cause damages on Earth,
  - It highly depends on the NEOs internal structure which is unknown in most cases,
    -> size limit about 100 m.
- Deflection
  - Required energy (impulse) defined mainly by NEO mass, (cruise) time, and P/L capacity,
  - The "optimal" deflection system has to be determined in each case,
  - 100% success rate is mandatory!

Aspects of evacuating a NEO impact area,

C. Gritzner, K. Duerfeld

# **NEO Hazard Mitigation Methods**

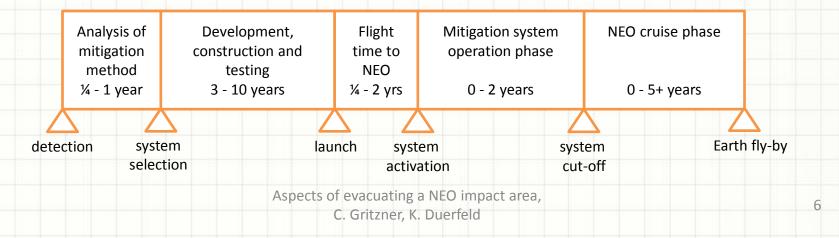
NEO deflection systems with possible near-term availability:

- Chemical propulsion systems (I sp rel = 1), -> small NEOs only
- Ion propulsion systems (GT), (I sp rel = <100), -> very long operation time
- Impactors (I sp rel = <1,000), -> high rel. velocity required
- Nuclear explosives (I sp rel = <100,000), -> efficiency uncertain.

NEO deflection systems with possible mid-term availability:

- Solar mirror system (I sp rel = <1,000), -> limited by dust, long op. time
- High energy chemical propulsion systems (I sp rel = 2), -> expensive
- Nuclear propulsion systems (I sp rel = 2), -> development risks.

Other systems are too remote, too weak or too complex, e.g. laser systems, in-situ propellant extraction, solar sails, painting (Yarkovski effect), antimatter, etc...


### **Reasons for Evacuation**

#### **Operational reasons**

- Warning time too short (for mitigation measures) due to late detection (at least about 4 to 15 years required).
- Technical reasons
- Deflection system developed not 100% functional.

#### Economical / political reasons

- Deflection costs far higher than expected damages,
- Minor, regional damages expected (sub-Tunguska size and/or remote location).



General risks / problems in case of evacuation:

- Evacuation only of persons, animals, moveable goods,
- Irretrievable loss of infrastructure, buildings, nature preserve, etc.,
- Additional risks due to possible destruction of chemical plants, nuclear power stations, etc.

#### Efficiency of evacuation depends on:

- Location of impact area a densely populated area could possibly not be evacuated completely,
- Precise prediction of the impact area may be too inaccurate due to poor orbital data (short warning time),
- Warning time available long lead time allows for (nearly) complete evacuation.

Costs of search, evacuation, and mitigation measures:

| Measure                      | Estimated costs [million Euro] |  |  |
|------------------------------|--------------------------------|--|--|
| Search program (ground)      | 5 – 100                        |  |  |
| Search mission (Venus orbit) | 300 – 2,000                    |  |  |
| Evacution (NEO 150 m)        | 100 – 5,000                    |  |  |
| Evacuation (NEO 750 m)       | 4,000 – 40,000                 |  |  |
| Mitigation mission (simple)  | 500 – 5,000                    |  |  |
| Mitigation mission (complex) | 5,000 – 100,000                |  |  |

Prediction of impact area depends on accuracy of orbital data and available lead time.

Predicted destruction and evacuation area shrink with time, but evacuation success sinks due to short time to act.

Expected damages strongly depend on impact location.

| Inhabitants / km <sup>2</sup> | % of Earth's surface |  |
|-------------------------------|----------------------|--|
| 2,500                         | 0.1                  |  |
| 50                            | 15.7                 |  |
| 10                            | 13.5                 |  |
| 0                             | 70.7                 |  |
| Average: 12                   | 100                  |  |



dpa

Aspects of evacuating a NEO impact area, C. Gritzner, K. Duerfeld

#### Example:

Discovery of a stony NEO at 40 lunar distances (LD) or about 10.5 days in advance (warning time).

A mean continental population density of 40 people / km<sup>2</sup> is considered, as well as a radar position determination uncertainty of 0.1", orbital eccentricity e = 1.7 (impact angle  $\approx$ 75°), and a relative NEO velocity of 20 km/s (Duerfeld, 2004, and Kasper, 2004).

| NEO diameter [m] | Detruction area [km <sup>2</sup> ] | Evacuation area [km <sup>2</sup> ] | Evacuation costs [million Euro] |
|------------------|------------------------------------|------------------------------------|---------------------------------|
| 60               | 300-3,000 (airblast)               | 4,000                              | 90                              |
| 150              | 2,000-7,000 (airblast)             | 20,000                             | 500                             |
| 400              | 12,500                             | 120,000                            | 3,500                           |
| 750              | 45,000                             | 410,000                            | 13,200                          |

Aspects of evacuating a NEO impact area,

C. Gritzner, K. Duerfeld

Comparison of costs of evacuation, mitigation missions, damages (Duerfeld, 2004, Kasper, 2004, Gritzner et al., 2006). The values given may vary by an order of magnitude, depending on impact site, warning time, etc...!

-> Evacuation is cheaper than mitigation (about a factor of 2 to 10),

-> Damages are higher than mitigation costs (about a factor of 4 to 45).


| NEO      | Evacuation costs   | Mitigation costs | Average impact         | Average impact |
|----------|--------------------|------------------|------------------------|----------------|
| diameter | [m] [million Euro] | [million Euro]   | damages [million Euro] | casualties     |
| 60       | 90-2,200           | 500-5,000        | 20,000                 | 16,700         |
| 150      | 100-5,000          | 1,000-10,000     | 45,000                 | 37,500         |
| 400      | 3,500-15,000       | 10,000-50,000    | 120,000                | 100,000        |
| 750      | 4,000-40,000       | 25,000-100,000   | 650,000                | 540,000        |

### Conclusions

- Evacuation of the impact area should be the last option in NEO mitigation (only if NEO deflection/destruction is impossible),
- Due to the current detection rates evacuation will be the most probably case for the next decades (short warning time),
- Evacuation plans should be developed and updated,
- Mitigation studies and tests have to be carried out,
- NEO search activities have to be intensified!



PS1 telescope by Brett Simison



Don Quijote study by ESA/AOES Medialab



David A. Hardy

Aspects of evacuating a NEO impact area, C. Gritzner, K. Duerfeld