Carles SIMO
Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona Gran Via de les Cortes catalanes, 585 08007 Barcelona Espagne carles@maia.ub.es
Geometry of Hamiltonian Dynamics: Goals and Methods
Abstract : Hamiltonian Dynamics appears in a natural way in many physical problems. In this talk we shall present a quick review dealing with the following topics: \begin{itemize}
\item[-] The geometrical objects in the phase space: fixed points, periodic orbits, invariant tori. Hyperbolicity and the related invariant manifolds. Homoclinic phenomena.
\item[-] Dynamical consequences: Integrability, stability and practical stability, capture and escape, diffusion, chaos. Their detection.
\item[-] The tools: Algebraic, analytical, variational, topological, probabilistical, symbolical, numerical, graphical.
\item[-] Applications: Variants of the two body problem, the three body problem, geodesics, billiards, etc.
\item[-] Extensions: Limit PDE, volume preserving flows, etc.
\end{itemize}