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The Minimum Orbit Intersection Distance
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The MOID is the minimum value of the 2-variable distance function d between a
point on the first orbit and a point on the second one.
However, the two orbits can get close at other pairs of points, that correspond to
local minima of d . So it is important to keep track of all these points.
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Computation of the local minima

There are several papers in the literature on the computation of the minimal
points of d , through the computation of all the critical points of d2 (see e.g.
Sitarski 1968).

Recently some algebraic methods to compute all the critical points of d2 have
been introduced:

using Gröbner’s basis (see Kholshevnikov and Vassiliev 1999);
using the resultant theory (see Gronchi 2002, 2005).

They are both based on a polynomial formulation of the problem.
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The orbit distance maps

E is a vector of 10 components representing the geometrical configuration of
the two orbits;
V is a vector with components the two fast parameters along each orbit.

The critical points of d2(E , ·) are the solutions of

∇V d2(E ,V ) = 0 .

We define the maps:

E 7→ dh(E) := d(E ,Vh(E))

E 7→ dmin(E) := min
h

dh(E)

giving the values of d at its local minima of indices h and its absolute minimum,
respectively.

Remark: For fixed E , the map dmin corresponds to the MOID.
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The orbit distance maps

E is a vector of 10 components representing the geometrical configuration of
the two orbits: E = (a1, e1, I1,Ω1, ω1; a2, e2, I2,Ω2, ω2);
V is a vector with components the two fast parameters along each orbit:
V = (v1, v2).

The critical points of d2(E , ·) are the solutions of

∇V d2(E ,V ) = 0 .

We define the maps:

E 7→ dh(E) := d(E ,Vh(E))

E 7→ dmin(E) := min
h

dh(E)

giving the values of d at its local minima of indices h and its absolute minimum,
respectively.

Remark: For fixed E , the map dmin corresponds to the MOID.
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Problems in computing the uncertainty of dh and dmin

The observational errors produce an uncertainty in the computed orbits and in
their distance values.
To compute the uncertainty of dh (for dmin is the same) we can use the standard
covariance propagation formulae

Γdh =

[
∂dh

∂E
(E)

]
ΓE

[
∂dh

∂E
(E)

]T

. (1)

Problems:
the derivative ∂dh

∂E does not exist at orbit crossings, i.e. when dh = 0.
the confidence interval may allow negative values of the distance dh when the
uncertainty is very small, while dh > 0.

We will use the results in (Gronchi and Tommei 2007) to overcome these
problems and give a meaningful uncertainty to dh even in these cases.
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Idea

Let us vary only one orbital element
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Idea

Let us vary only one orbital element
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Idea

Let us vary only one orbital element

����

orbital
element

distance

derivable
map

x

y
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Hint: Changing the sign to dh, we obtain a differentiable function even at orbit
crossings.
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Change of sign and restriction of the domain

For a function of several variables, the search for a smoothing through a change of
sign can be difficult.

y−axis

x−axis

f (x , y) =
√

x2 + y2

f is not differentiable in the origin.

y−axis

x−axis

f̃ (x , y) =

{
−f (x , y) per x > 0

f (x , y) per x < 0
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Change of sign and restriction of the domain

For a function of several variables, the search for a smoothing through a change of
sign can be difficult.

y−axis

x−axis

f (x , y) =
√

x2 + y2

f is not differentiable in the origin.

y−axis

x−axis

f̃ (x , y) =

{
−f (x , y) per x > 0

f (x , y) per x < 0

f̃ can be extended with
differentiability in the origin.
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Giving a sign to dh

We give a simple geometric interpretation of the choice of the sign for dh.

τ1, τ2 are the tangent vectors to the
orbits at their mutually closest
points.
τ3 = τ1 × τ2.
∆h is the vector joining the two
orbits on these points:
∆h ⊥ τ1, τ2; ∆h||τ3.

3

1

h

      Orbit 1

          Orbit 2

2

d̃h =

{
+dh if ∆h = τ3
−dh if ∆h = −τ3

We can extend d̃h at orbit crossings, i.e. where d̃h = 0.

Remark: We can not extend d̃h at configurations in which τ1 and τ2 are parallel.
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The satellite dynamical model

We consider only the main gravitational perturbation due to the non-spherical
shape of the Earth.
Then, by the averaging principle, the secular evolution of a satellite is given by

ā = ao , ē = eo , Ī = Io ,

Ω̄ = Ωo −
3
2

J2R2
⊕

p2 n̄ (cos I ) t , (2)

ω̄ = ωo +
3
2

J2R2
⊕

p2 n̄
(
2− 5

2
sin2 I

)
t ,

where
(ao , eo , Io ,Ωo , ωo) are the initial Keplerian orbital elements;
J2 is the second zonal harmonic in the Earth gravitational field;
R⊕ is the Earth equatorial radius;
p = ao(1− e2

o ) is the conic parameter;
n̄ is the averaged mean motion.
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The map d̃h and its uncertainty

The secular evolution of the orbit distance (with sign) is defined by

d̃h(t) = d̃h(Ē(t)) (3)

where Ē(t) is the 10-vector giving the evolution of the two trajectories.
For a fixed time t, its uncertainty is given by the propagation formulae:

Γd̃h
=

[
∂d̃h

∂E
(Ē)

]
ΓĒ

[
∂d̃h

∂E
(Ē)

]T

(4)

with ΓĒ the 10× 10 covariance submatrix

ΓĒ =
∂Ē
∂Eo

ΓEo

[
∂Ē
∂Eo

]T

(5)

where Eo is the initial condition for the secular evolution and ΓEo its 10× 10
covariance submatrix.

Remark: In the space debris case, this uncertainty is typically small.
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Test I: the secular evolution of the orbital elements

orbit 1 orbit 2
ao 7866.0 7864.9
eo 0.0038 0.0021
Io 73.546 102.069
Ωo 147.449 205.237
ωo 1.549 132.325

The initial orbital elements
and covariance matrices
have been created by a new
orbit determination method
based on the first integrals
of the Kepler problem (see
Gronchi et al. 2010).
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Figure: Secular evolution of angles Ω̄1, ω̄1, Ω̄2, ω̄2 for
a two orbit configuration with initial orbital elements
in the table on the left.
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Test I : the secular evolution of d̃1, d̃2
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Figure: The red line is
d̃min, the blue line is the
second minimum value of
d . The two continuous
lines are d̃1 and d̃2,
respectively above and
below. The dashed lines
represent the uncertainty
bounds.

Remark: In this example d̃1 and d̃2 exchange their role as absolute minimum.
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Test II : interval of possible crossing times

We perform an interpolation with splines at black nodes of the uncertainty
bounds.

orbit 1
ao 7915.8
eo 0.0146
Io 73.912
Ωo 321.864
ωo 316.498

orbit 2
ao 7853.2
eo 0.0064
Io 102.379
Ωo 181.840
ωo 343.026 0 20 40 60 80 100 120 140 160 180
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Figure: The blue line represents the secular evolution of
d̃1, the black broken lines are the uncertainty bounds.
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Test II : interval of possible crossing times

We perform an interpolation with splines at black nodes of the uncertainty
bounds.
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The red segment is the
interval of crossing
times [ta, tb]:

ta = 98.7254 h
tb = 113.4934 h

tnom = 106.0461 h
∆t = 14.7679 h
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Test III : a LEO population

We have also performed a test with a catalog of 874 orbits (Dimare et al. 2011)
with a 6 8600 km and 5 km 6 |d̃min| 6 10 km at the initial time. We detected
4689 orbit crossings in a week time span.
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the maximum
crossing number is
31 (red line);
32 orbits have only
one orbit crossing
(green lines);
there are 29 orbit
couples whose
trajectories intersect
twice and 8 three
times (magenta
lines).
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Conclusions

In this simplified dynamical model the secular evolution of an artificial satellite
is always computable explicitly and it is a differentiable map of initial orbital
elements.

We can always perform the computation of the distance between two confocal
orbits together with its uncertainty for a suitable time span. Then, we may
use these results to define an interval of possible crossing times.

If the catalog of space debris contains N orbits we have N(N − 1)/2 couples
to examine. We may select those pairs with a not empty crossing interval and
use them as input orbit couples for collision avoidance algorithms.
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