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This work is included in a wider research project —three years— entitled

Dynamic simulation of complex space systems

(AYA2010-18796)
supported by the DGI of the Spanish Ministry of Science and Innovation. Authors
thank the Spanish Gov. for its financial support.

Simultaneously this project is closely related with some European activities on Space
Situational Awareness (SSA). According with ESA, the Space Situational Awareness
(SSA) can be preliminarily defined as a comprehensive knowledge of the popula-
tion of space objects, of existing threats/risks, and of the space environment.
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During last years our group GSD-UPM —Group of Space Dynamics of the UPM— has been working on different
research lines:

• dynamics of tethers (electrodynamic and/or inert tethers)

• orbit propagation (DROMO)

• attitude propagation (axisymmetric bodies)

• new propulsive concepts as the Ion Beam Shepherd, described in the following references.

• [1] Ion beam shepherd for contactless space debris removal, by

C. Bombardelli and J. Peláez,
Journal of Guidance, Control and Dynamics, 34(3):916–920, May 2011. DOI: 10.2514/1.51832.

• [2] Ion beam shepherd for asteroid deflection, by

C. Bombardelli and J. Peláez,
Journal of Guidance, Control and Dynamics, 34(4):1270–1272, July 2011. DOI: 10.2514/1.51640.

As a consequence of this previous work, a new research project has been started: NEODROMO. The main objective
of NEODROMO is to produce a numerical tool to study the long term dynamics of asteroids, specially tailored for the
NEO’s dynamics, including models of increasing complexity that can be used for the determination of orbits and the
prediction of trajectories. There are two main reasons why we opted by a numerical option:

• to benefit from our previous numerical tools and

• each 10 years, more or less, the speed of the computers is multiplied by 1000. Any propagator based on numerical
techniques and sound algorithms will enjoy these future advantages practically for free.
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The NEODROMO projects aims to produce a numerical tool to study the long term dynamics
of asteroids, specially tailored for the NEO’s dynamics. To do that the following requirements
should be fulfilled:

• a propagator for the prediction of the dynamics of the center of mass of the asteroid

• a propagator for the prediction of the attitude dynamics of the asteroids (if needed)

• a model for the ephemeris of the involved celestial bodies (planets, asteroids, Moon, ...)

• a model for the gravitational actions acting on the asteroid (forces and torques)

• a model for the thermal behavior of the asteroid

• a model for the surface of the asteroid

• a model for the Yarkovsky force

• a model for the YORP torque (if needed)

• models for the kinematic aspect of the problem (references frames, SOFA routines, ...)

Due to the large populations and families of asteroids, the design of this tool should facilitate
the generation of particular propagation tools deliberately tailored for a particular asteroid.
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In order to develop the NEODROMO project a team has been formed in the UPM:

• Javier Herrera-Montojo, undergraduate student (Master thesis)

• Hodei Urrutxua, Ph.D. student

• Isabel Pérez-Grande, associated professor of aerospace engineering (thermal aspects)

• Manuel Ruiz Delgado, associated professor of aerospace engineering

• José Manuel Hedo Rodriguez, associated professor of aerospace engineering

• Claudio Bombardelli, Ramón y Cajal Scientist

• Jesús Peláez, professor of aerospace engineering
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The propagation of the orbit of a celestial body or a spacecraft involves the integration of the
equations of motion:

r̈ = − μ

r3
r + ap (1.1)

where r is the position vector of the satellite and ap is the total perturbing acceleration. The
Special Perturbation Methods perform a numerical propagation of these equations. Perhaps the
most classical is the Cowell method.

The Cowell method is a Special Perturbation method which provides a numerical solution of
this problem by integrating the following set of ODE’s:

ẍ = −μ
x

r3
+ apx(t, x, y, z, ẋ, ẏ, ż), r =

√
x2 + y2 + z2

ÿ = −μ
y

r3
+ apy(t, x, y, z, ẋ, ẏ, ż)

z̈ = −μ
z

r3
+ apz(t, x, y, z, ẋ, ẏ, ż)

where (x, y, z) are the cartesian coordinates of the position vector r in some frame (usually
inertial). The name is due to its discoverer P.H. Cowell in the early 20th century.

The NEODROMO project, however, is based in other Special Perturbation Method: DROMO.
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• A Special Perturbation Method in Orbital Dynamics, by
J. Peláez, J. M. Hedo & P. Rodríguez de Andrés,

Celestial Mechanics and Dynamical Astronomy, Vol.97, pp. 131-150, 2007, doi:10.1007/s10569-006-9056-3
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The last variable change:

ζ1 = ψ2A, ζ2 = ψ2B, ζ3 =
1

ψ

leads to:

dτ

dσ
=

1

ζ3
3 ŝ

2

dζ1
dσ

=
1

ζ4
3 ŝ

3
[+ŝ sinσfpx + {ζ1 + (1 + ŝ) cosσ}fpz]

dζ2

dσ
=

1

ζ4
3 ŝ

3
[−ŝ cosσfpx + {ζ2 + (1 + ŝ) sinσ}fpz]

dζ3

dσ
= − 1

ζ3
3 ŝ

3
fpz

dε0
1

dσ
= −λ(σ)

2
{sin(σ − σ0)ε

0
2 + cos(σ − σ0)ε

0
4}

dε0
2

dσ
= +

λ(σ)

2
{sin(σ − σ0)ε

0
1 − cos(σ − σ0)ε

0
3}

dε0
3

dσ
= +

λ(σ)

2
{cos(σ − σ0)ε

0
2 − sin(σ − σ0)ε

0
4}

dε0
4

dσ
= +

λ(σ)

2
{cos(σ − σ0)ε

0
1 + sin(σ − σ0)ε

0
3}

These equations should be integrated, taking into account
the relations:

λ(σ) =
1

ζ4
3 ŝ

3
fpy

ŝ = 1 + ζ1 cosσ + ζ2 sinσ

z =
1

r
= ζ2

3 {1 + ζ1 cos σ + ζ2 sinσ}
dr

dτ
= ζ3(ζ1 sinσ − ζ2 cos σ)

χ =
σ − σ0

2⎛
⎜⎜⎝
ε1
ε3

ε2

ε4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cosχ sinχ 0 0
− sinχ cosχ 0 0

0 0 cosχ − sinχ
0 0 sinχ cosχ

⎞
⎟⎟⎠

⎛
⎜⎜⎝
ε0
1

ε0
3

ε0
2

ε0
4

⎞
⎟⎟⎠

and starting from the appropriated initial conditions.
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In order to check the method we chose the Example 2b (page 122) of the book of Stiefel & Scheifele. It is about a
satellite with e = 0.95, i = 30◦, perturbed by an oblate Earth and the Moon. For the Earth perturbation they take the
following values:

J2 = 1.08265 · 10−3, RE = 6371.22 Km, μ = 398601.0 Km3s−2

The lunar perturbation is modeled through the force:

�F PL = −mμL{
�R− �ρ

| �R− �ρ|3 +
�ρ

ρ3
}

{
�R satellite position vector
�ρ Moon position vector

with the following Moon ephemeris:

�ρ = ρ{sinΩLt�i1 −
√
3

2
cos ΩLt�j1 −

1

2
cos ΩLt�k1}

where ρ, ΩL, and μL are constants:

ρ = 384400 Km, ΩL = 2.665315780887 · 10−6 s−1, μL = 4902.66 Km3s−2

Linear and Regular Celestial Mechanics, Stiefel & Scheifele, Springer-Verlag, NY, 1971
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In order to calculate the trajectory the following initial condition should be given:

x1 = 0.0, y1 = −5888.9727 km, z1 = −3400.0000 km
ẋ1 = 10.691338 km/s, ẏ1 = 0.0, ż1 = 0.0

Initially the satellite is at the perigee (the distance is R = 6800
km). The position of the satellite is propagated after 50 orbits,
which correspond to 288.12768941 mean solar days. The most
accurate position given in the book of Stiefel & Scheifele is:

x1f = −24219.0503 km
y1f = 227962.1064 km
z1f = 129753.4424 km

which has been obtained using 498 steps per orbit. We recalcu-
lated the orbit and we obtained:

x1f = −24219.0501159 km
y1f = 227962.1063730 km
z1f = 129753.4424001 km
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Trajectory of the Example 2b
extracted from the book of Stiefel & Scheifele

DROMO: a new regularized orbital propagator GSD-UPM



First Comparison
Page: 12/27

September 25, 2011

Table taken from [1]

Stiefel Sperling Kustaanheimo
Method Scheifele [2] Burdet [3] Stiefel [4] Cowell [5] DROMO
x(Km) -24219.050 -24218.818 -24219.002 -24182.152 -24219.279
y(Km) 227962.106 227961.915 227962.429 227943.989 227962.207
z(Km) 129753.442 129753.343 129753.822 129744.270 129753.492
Steps/rev 500 62 62 240 62
Error 0.318 0.501 42.5 0.250

[1] Modern Astrodynamics, Victor R. Bond & Mark C. Allman, Princeton U.P., NJ 1996
[2] Linear and Regular Celestial Mechanics, Stiefel & Scheifele, Springer-Verlag, NY, 1971
[3] Elimination of Secular Terms from the Differential Equations for the Elements of the Perturbed Two-Body Prob-

lem, V. R. Bond & M. F. Fraietta, Proceed. of the Flight Mechanics and Estimation Theory Symposium, NASA,
1991

[4] The uniform, regular differential equations of the KS transformed perturbed two-body Problem, V. R. Bond,
Celestial Mechanics, 10, 1974

[5] The Burdet formulation of the perturbed two body problem with total energy as an element,
V. R. Bond & M. K. Horn, JSC Internal 73-FM-86, NASA, 1973
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Integration routine: Runge-Kutta-Fehlberg 7(8) with step control.
In all zones of interest our method results quicker than Sperling-Burdet’s method, or equivalently, it gives more

accurate results than the SB method for the same runtime, with similar computational effort.
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Consider a S/C which perform a fly-by of a given planet. The trajectory of the S/C, after the fly-by, has a very large
sensitivity with the initial conditions at the entrance to the sphere of influence of the planet. High-fidelity propagation
is needed.
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In order to describe the fly-by of a planet with some accuracy we prepared TWO propagation
tools —based on DROMO and Cowell method— with the following characteristics:

• Numerical integrator: 8th order embedded Runge-Kutta method (Dormand & Prince)

• Earth Orientation Parameters: SOFA routines

• JPL ephemerides based on the mean orbital parameters

• Earth’s gravitational potential EGM96 (up to degree and order 360)

• Third body gravitational perturbation (Sun, Moon and all the planets)

• Solar radiation pressure

With these propagations tools some fly-by’s were described.

• Advanced Propagation of Interplanetary Orbits in the Exploration of Jovian Moons, by

J. Esteban-Dones and J. Peláez,
4th Int. Conference on Astrodynamics Tools and Techniques, 3-6 May 2010, ESAC Villafranca, Madrid, Spain
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• Comparison GDT method vs Cowell’s method
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INTEGRATION ALGORITHMS

Method Single-step/ Fixed-step/ 1st order/ Summed/
Multi-step Variable-step 2nd order Non-summed

Runge-Kutta Single Fixed 1st order NA
Runge-Kutta-Fehlberg Single Variable 1st order NA
Adams (non-summed) Multi Fixed 1st order Non-Summed
Adams (summed) Multi Fixed 1st order Summed
Shampine-Gordon Multi Variable 1st order Non-Summed
Störmer-Cowell Multi Fixed 2nd order Non-Summed
Gauss-Jackson Multi Fixed 2nd order Summed
Störmer-Cowell Multi Variable 2nd order Non-Summed

The performances of the Cowell method increase when the integration algorithm used
in the propagation is a new Störmer-Cowell of variable step. In particular we use in our
calculation the algorithm carried out by Matthew M. Berry. A Variable-Step Double-
Integration Multi-Step Integrator. PhD thesis, Virginia Tech, Blacksburg, 2004.
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Method Cowell DROMO DROMO Cowell Cowell
Integrator RKF4(5) RKF4(5) RKF7(8) Störmer-Cowell 5 Störmer-Cowell 9
x (km) -24210.188 -24219.049 -24219.050 -24232.184 -24219.183
y (km) 227957.706 227962.097 227962.105 227966.173 227962.169
z (km) 129751.208 129753.437 129753.441 129755.268 129753.473
steps/rev 240 62 29 372 372
Fcalls/rev 1440 372 372 372 372
Run-Time(s) 0.232 0.094 0.050 0.065 0.12
Error (km) 10.143 0.010 0.002 13.896 0.150

Table 1.1: Results for Stiefel & Scheifele’s Example 2b, using DROMO’s newest formulation and different integrators for the Cowell equations.

The new comparison has been performed on the following basis:

1. improved integration routines has been used (RKF and SC)

2. for each special perturbation method the best integration routine is selected: the RKF —for the moment— for
DROMO and the Störmer-Cowell for the Cowell method

3. the tolerance of the integration process is tuned in order to reach the same number of functions call per orbit: 372

4. the final error and run-time is selected as the parameters measuring the quality of the integration

DROMO: a new regularized orbital propagator GSD-UPM
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Figure 1.1: Comparative results showing the “Run-Time” vs “Final Error” relation for different propagators when used in Stiefel & Scheifele’s Example 2b.

Since in a real propagation the time consumed in the evaluation of the right hand sides of the ODE’s that govern the
motion is the largest it would very interesting to use DROMO with some multistep integrator because of the number of
function calls will be reduced. In our test we selected the classical Shampine & Gordon —written in 1975— usually
called DE in several works on orbit propagation. The above figure summarizes the excellent behavior of DROMO with
this multistep algorithm.
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DEFINITION AND CLASSICAL ANALYSIS

• circular orbit. Radius R0. Velocity R0ω0

ω2
0 =

μ

R3
0

• at t = 0 start a constant radial thrust �ap = aR�ur

The angular momentum is constant and the trajectory is a
plane curve:

�h = �r × �v = �r0 × �v0 = R2
0ω0(−�j)

Let (r, θ) polar coordinates inside the orbital plane. The
law of areas takes the form

r2 θ̇ = h, where h = R2
0ω0 (1.2)

The forces are conservatives and derive from the potential

V (r) = −μ

r
− aR r

and the total energy is conserved

1

2
v2+V (r) = E, where E =

1

2
v2

0 −
μ

R0

−aRR0

We introduce the following non-dimensional variables:

r = uR0, τ = ω0 t, ε =
8 aR
R0ω2

0

Using the law of areas (1.2), the energy equation takes
the form

du

dτ
= ±

√
E − Veff(u)

where the effective potential Veff and the total energy E
(non-dimensional values) are given by:

Veff(u) =
1

u2
− 2

u
− ε

4
u, E = −(1 +

ε

4
)

The solution is given by the following quadratures:

τ = ±
∫ u

1

dξ√E − Veff(ξ)
(1.3)

θ = θ0 ±
∫ u

1

dξ

ξ2
√E − Veff(ξ)

(1.4)

which lead to an analytical solution; see, for example:
• An Introduction to the Mathematics and Methods of Astrodynamics, by

Richard H. Battin.,
Educational Series. AIAA, revised edition, 1999.
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TEST SOLUTION

Depending on ε, two different behaviors appear:

1. ε < 1 the thrust is small and the motion is bounded
by two concentric circles

2. ε > 1 the thrust is large and the motion is un-
bounded. In particular, the escape velocity is reached
after a while (see Battin’s book).

There is an asymptotic motion which separates these two
different behaviors; it appears for ε = 1.

τ = 4 ln

[
1 +

√
u− 1

1−√
u− 1

]
− 4

√
u− 1 (1.5)

Notice that the motion is tending to a circular motion
along a circumference of radius 2R0

The numerical obtention of this analytical solution is not
easy. In effect, the errors accumulated in the calculation
prevent the numerical solution to reach the asymptotic be-
havior for moderately large values of the time τ . These
errors move the energy line which is no longer tangent to
the graphic of the effective potential.
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Figure 1. Effective potential Veff and
total energy E for ε = 1.0

As a consequence, and due to the numerical errors:

1. the satellite descends towards the starting circle or

2. it escapes from the attractive body.

Thus, this well defined analytical solution of the Tsien
problem is an excellent tool to compare performances of
different propagators and integrators.

DROMO: a new regularized orbital propagator GSD-UPM



Comparison DROMO/Störmer-Cowell
Page: 22/27

September 25, 2011

TEST SOLUTION
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FIGURE 1.1: Satellite trajectory in the asymptotic case
ε = 1

The numerical obtention of the asymptotic analytical so-
lution of the Tsien problem is not easy. In effect, the
errors made in the numerical integration prevent to de-
scribe the asymptotic trajectory during long periods of
time. Note that a propagator is the combination of a Spe-
cial Perturbation method and an integration algorithm.
A suitable measure to evaluate performance of the pre-
sented propagators is to calculate the number of orbits
until the numerical solution starts to deviate from the
asymptotic orbit. A deviation is considered, when the rel-
ative error of the numerically computed position is larger
than a threshold. Here R is the current orbital radius
which must be compared with the radius of the asymp-
totic orbit 2R0.

|2R0 − R|
2R0

< 10−3

In our group we compared the results obtained with dif-
ferent combinations as shows the next slides.
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In this slide the results obtained by DROMO using Runge-Kutta-Fehlberg algorithms of given order are compared
with the Cowell method using the Störmer-Cowell algorithm of the same order
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Method DROMO DROMO DROMO DROMO SC SC
RKF7(8) RKF6(7) DE8 DE7 8th order 7th order

Rel tolerance 1e-11 1e-11 1e-11 1e-12 1e-14 1e-14
Runtime in s 0.21 0.47 - - 0.24 0.24

Function calls 2004 3378 1113 1623 439 536
Number of steps 154 338 - - 431 529

Runtime comparison for 4 complete orbits
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In this slide the results obtained by DROMO using Shampine & Gordon algorithms of given order are compared with
the Cowell method using the Störmer-Cowell algorithm of the same order
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• In terms of accuracy DROMO with the Runge-Kutta-Fehlberg routine RKF7(8) turn out
to be the best combination since they provide a longer and more stable description of the
asymptotic orbit (in the Tsien problem) and a much more accurate answer (in the example
2b of the book of Stiefel and Seifele).

• In terms of function calls the Störmer-Cowell formulation —in some cases, but not always—
turns out to be the best formulation since it provides the lower number of call to the deriva-
tive functions.

• from a global point of view, the combination of DROMO with the multistep method of
Shampine & Gordon (DE) shows excellent characteristics.

In the Tsien problem, DROMO + RKF7(8) is able to describe almost 6 times the asymptotic
orbit and SC9 only 4 with a very tight tolerance. That is, DROMO + RKF7(8) reaches levels of
accuracy unachievable for other propagators. This plus of accuracy makes DROMO propagator
the most appropriated when a high-fidelity description of the trajectory is mandatory. This plus
of accuracy, however, has a cost: the higher number of function calls due to the Runge-Kutta-
Fehlberg routine used to perform the integration.
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