Refinement of Near Earth Asteroids' orbital elements via simulateous measurements by two observers

Siegfried Eggl

University of Vienna, Austria Lille, September, 28th 2011

- Detection of PHAs with $H\approx 21$ on regular basis
- Main Problem: Very Short Arc (VSA) observations e.g. Milani & Gronchi (2009), Gronchi et. al. (2010)
- Potentially Hazardours Asteroids (PHAs) 2011:

% of total population data arc

11 %	< 10d
24 %	$\leq 20d$
55 %	< 40d

(IAU Minor Planet Center, 26.09.2011)

Method

Gain NEO's orbital elements via triangulation by two observers

3

History

Gromaczkiewicz (2006):

- relies heavily on fixed, trigonometric relations
- 7 (!) trigonometric funcitons in denominators
- observers restricted to the ecliptic

Gromaczkiewicz (2006):

- · relies heavily on fixed, trigonometric relations
- 7 (!) trigonometric funcitons in denominators
- observers restricted to the ecliptic plain

Goals:

- eliminate 'trigonometric denominators'
- eliminate observer positioning restrictions
- determine method-performance

Asteroid Positioning I

Asteroid Positioning II

Velocity Interpolation

• linear interpolation from two observations:

$$\vec{v}_{t_1} = \frac{\vec{H}_{t_2} - \vec{H}_{t_1}}{\Delta t} + O(\Delta t)$$

• stirling interpolation from three observations:

$$\vec{v}_{t_1} = \frac{\vec{H}_{t_2} - \vec{H}_{t_0}}{2\Delta t} + O((\Delta t)^2)$$

$$\{ \vec{H}, \vec{v} \} \rightarrow \{ \mathsf{a}, \mathsf{e}, \mathsf{i}, \omega, \Omega, \mathsf{M} \}$$

Unfavorable Configurations

Error Propagation

	$\alpha [^{o}]$	$\beta^* [^o]$	$\theta_1 [^o]$	$d_{S_1S_2}$ [AU]	$\Delta \alpha$ ["]	$\Delta \beta^*$ ["]	$\Delta \theta_1$ ["]	$\Delta d_{S_1S_2}$ [AU
Ī	0 to π	0 to π	fixed $\pi/4$	1	1	1	1	10^{-7}
r	0 to π	fixed $\pi/2$	- $\pi/2$ to $\pi/2$	1	1	1	1	10^{-7}

Down to a minimum baseline, the method is **robust against observer positioning**, as well as NEO positioning, except for 'unfavorable configurations'

 $\Delta_{min} = 2d \cdot tan(\Delta \alpha)$ $\frac{d}{1 \text{ AU}} = 2" \quad 2901 \text{ km}$ $36000 \text{ km} \quad 2" \quad 0.69 \text{ km}$

- numerical interation: Sun + 8 planets + NEA + 2 Observing Satellites
- ficticous NEA ($a = 2 AU, e = 0.5, i = 30^{o}, \omega, \Omega, M = 0$)
- satellites positioned at L_4 and L_5 (Sun-Earth)
- integrator: Lie-Series (Eggl & Dvorak, 2010)

Ideal Measurement Positioning Error

Ideal Measurement Positioning Error

Ideal Measurement Velocity from 2 Observations

Ideal Measurement - Semimajor Axis

Refinement of Near Earth Asteroids' orbital elements via simulateous measurements by two observers

Ideal Measurement - Eccentricity

Refinement of Near Earth Asteroids' orbital elements via simulateous measurements by two observers

Ideal Measurement - Positioning Orbital Elements

2007 JY2

a [AU]	e []	i [º]	$\omega[^{o}]$	$\Omega[^{o}]$	M[^o]
2.19956074	0.68806235	1.5955816	105.080281	225.738210	329.8208272
σ_a [AU]	σ_e []	$\sigma_i \ [^o]$	$\sigma_{\omega}[^{o}]$	$\sigma_\Omega[^o]$ 0.00049895	$\sigma_{M}[^{o}]$
0.0031225	0.0005391	0.0016273	0.0037194		0.69888

78 observations spanning a data arc of 31 days (JPL, 2011)

Ideal Measurement Statistics

Ideal Measurement Statistics

two (\bigcirc) and three (\Box) observations

Ideal Measurement Statistics

measurement intervals: 1h, 0.4d, 4d, 40d two (\bigcirc) and three (\Box) observations

+ Angular Measurement Uncertainties

Uncertainties:

- Angular measurements (diffraction, seeing)
- Observer positioning errors
- Finite light travel time

Three scenarios:

2 satellites (1m optical) 2 satellites (30cm optical) 1 satellite (1m optical) + 1 earthbound (2" seeing) *

2007 JY2

a [AU]	e []	i [º]	$\omega[^{o}]$	$\Omega[^{o}]$ 225.738210	M[^o]
2.19956074	0.68806235	1.5955816	105.080281		329.8208272
σ_a [AU]	σ_e []	$\sigma_i \ [^o]$	$\sigma_{\omega}[^{o}]$	$\sigma_\Omega[^o]$ 0.00049895	$\sigma_{M}[^{o}]$
0.0031225	0.0005391	0.0016273	0.0037194		0.69888

78 observations spanning a data arc of 31 days (JPL, 2011)

Summary & Conclusion

- Method for quick follow-up refinement of orbital elements
- Only 2 trigonometric functions in denominators left causing 'unfavorable configurations'
- 'Realistic' measurement scenarios (e.g. 2007 JY2) produce comparable results to JPL with **two observations only**
- Improvements via more precise measurements and/or combination with classical approaches

Thank you for your attention!

References:

Chamberlin, A., Yeomans, D., Giorgini J., Chodas, P., Standish, M., Jacobson, R., Keesey, M., Ostro, S.: Solar System Dynamics Group, JPL/Caltec NASA. http://ssd.jpl.nasa.gov (2011)

Eggl, S.: Refinement of Near Earth Asteroids orbital elements via simultaneous measurements by two observers, Celest Mech Dyn Astr, 109:211228 (2011)

Eggl,S., Dvorak,R.: An Introduction to Common Numerical Integration Codes Used in Dynamical Astronomy , Lecture Notes in Physics, 790:431-477 (2010)

Gromaczkiewicz, J.: Trigonometric calculation of the elements of orbit of celestial bodies by two telescopes situated in the Lagrangian points L 4 and L 4, Proceedings of the 4th Austrian Hungarian workshop on celestial mechanics, Department of Astronomy of Etxs University, 2133 (2006)

Gronchi, G.F., Dimare, L., Milani, A.: Orbit determination with the two-body integrals. Celest Mech Dyn Astron 107, 299318 (2010)

IAU Minor Planet Center, PHA catalogue, http://www.minorplanetcenter.net/ (2011)

Milani, A., Gronchi, G.F.: : Theory of Orbit Determination Cambridge University Press, Cambridge (2009)