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Orbital uncertainty is an important 
factor in many applications but a 
rigorous estimate for it can be 

challenging to obtain.�



When is uncertainty 
information required?�

!   linking astrometric data sets to specific objects 
(AKA cross-correlation, identification)�

!   planning of follow-up observations�

!   recovery of lost objects�

!   collision-probability estimation �

!   object classification �

!   in preparation of initial conditions for orbital 
integrations that are carried out to study the 
dynamics of a specific real object �



observation (R.A. & Dec.)�
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The theoretical prediction is a nonlinear�
function of the orbital elements. The�
equations are usually linearized, but �

the validity of the Gaussian approximation �
 was not questioned until...�





Bayesian (AKA statistical) inversion 
fundamentally means that the 
parameters to be solved for (e.g., orbital 
elements P ) are treated 
probabilistically and their posterior 
probability density function is defined as�

or just �

p(P |!)" p(P)p(! | P) = p(P) exp # 1
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Statistical Ranging�
Virtanen et al. 2001, MCMC version Oszkiewicz et al. 2009 �

α1 + Δα1
δ1 + Δδ1

ρ1
α2 + Δα2
δ2 + Δδ2 �

Δρ = ρ2 – ρ1 �
�

Criterion for acceptance: �
Δχ2 < Δχ2

lim�
Φij – φij(P ) < nσij   (n ≥ 3) �
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Figure 2. Extents of two-dimensional marginal probability densities for pairs of orbital elements for the NEO 2004 HA39 (observational time interval 0.9 d
and an observational noise estimate of 1 arcsec), the MBO 2004 QR (7.2 d and 0.5 arcsec), and the TNO 2002 CX224 (733 d and 0.5 arcsec) as a function of
the mapping parameter, i.e. semimajor axis. LSL solutions (star) are the following 2004 HA39 : a = 2.133, e = 0.532, i = 36.◦268, ! = 204.◦182, ω =
67.◦182, M0 = 342.◦540 (epoch 2004 April 25.0 TDT), MBO 2004 QR: a = 2.332, e = 0.303, i = 6.◦331, ! = 314.◦738, ω = 330.◦746, M0 = 28.◦320
(epoch 2004 August 16.0 TDT), 2002 CX224 : a = 46.212, e = 0.112, i = 16.◦843, ! = 42.◦257, ω = 137.◦939, M0 = 246.◦612 (epoch 2001 October 21.0
TDT). The iterated variation intervals at selected local linear approximation points for the remaining five elements are shown with the error-bar notation.
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Figure 3. The time evolution of semimajor axis uncertainty for the NEO 2004 HA39, the MBO 2004 QR, and the TNO 2002 CX224. The phase transition takes
place between 0.15 and 0.65 d (3.6 and 15.6 h) for 2004 HA39, between 2 and 7 d for 2004 QR and between 100 and 400 d (3 and 14 months) for 2002 CX224.
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Figure 4. As in Fig. 3, but for eccentricity.

There are prospects for VOV sampling in NEO collision prob-
ability computation: in VOV, it is straightforward to constrain
the MC sampling into narrow regimes in, e.g. the semimajor
axis, allowing densified MC computation of collision probabili-
ties. The densification is often called for as the collision prob-
abilities are typically small, of the order of 10−6 or smaller. In
continuation, VOV promises to become a useful tool in the as-
sessment of the asteroid identification problem (Granvik et al.
2005).

In comparison to the one-dimensional LOV techniques, such as
LOV, the six-dimensional VOV technique has both advantages and

disadvantages. Clearly, VOV has the advantage of being able to
cover entire six-dimensional volumes of variation which can play a
crucial role in, e.g. collision probability computation. By the same
token, LOV continues to be the more efficient technique in terms of
computing time.

VOV sampling has already proved efficient and useful in the
NEO observing programme of the Near-Earth-Object Network at
the Nordic Optical Telescope on La Palma (Muinonen et al. 2004).
Using the technique, follow-up observational sequences have been
designed and successfully realized. The future prospects are intrigu-
ing, with application of VOV sampling to the precise astrometry by
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Figure 5. As in Fig. 3, but for inclination.

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0.001  0.01  0.1  1  10  100  1000

lo
g 1

0(
σ R

.A
. (

°)
)

dt (d)

Figure 6. Time evolution of ephemeris uncertainty for 2004 QR. The s.d. of the RA PDFs as a function of time elapsed from discovery for different lengths
of the observational time interval, top to bottom: <1 d (crosses; using Ranging), 2.0 d (diamonds; using Ranging), 7.2 d (squares; using Ranging), and 31 d
(stars; using VOV). Solid–dashed curves show the evolution of ephemeris prediction; the dashed part corresponds to the hypothetical evolution without the
new observations (timing of which is indicated with vertical dotted lines).

Gaia, the ESA astrometric space observatory to be launched no later
than 2012.
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Fig. 2. Geocentric spherical coordinate clouds at three epochs (t1 = t0 + 1.5 days, t2 = t0 + 2 days, and t3 = t0 + 2.5 days, where t0 is the date of the first

observation) derived from orbits that were inverted from sets A1, A2, A3, and B1 in Fig. 1, and designated, respectively. Note that cloud A1 is obscured by

cloud B1.

version (that is, to search for sample orbits given a full set

of observations) for every remaining trial linkage, because

a huge number of trial orbits would be required to make

sure that linkages are not erroneously discarded. As it will

be impossible to find sample orbits for unlikely trial link-

ages, a large number of trial orbits are thus generated in

vain. The reason for the inefficiency stems from the MC

approach used in Ranging. Assuming that the range in-

tervals (intervals for the topocentric distances at the first

and last observation dates) are kept constant, the ratio be-

tween sample orbits and required trial orbits is inversely

proportional to the length of the orbital and observational

arcs, and the number of observations. Consider the situa-

tion in the six-dimensional orbital-element space. When the

amount of data is barely enough to allow for a meaningful

inversion, very different orbits fit the observations to pre-

defined accuracy. In other words, the volume Vfinal mapped

by the sample orbits in the orbital-element space is substan-

tial. As more observations are added, the difference between

orbits fitting to the observations reduces, and the volume

Vfinal decreases. Now, assume that the initial range inter-

vals (containing most of the orbital-element uncertainty, and
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Figure 7: Ephemerides for nine identified and also independently correctly linked Spitzer
objects as seen by a Spitzer-centric observer (left) and by a geocentric observer (right).
The computed positions correspond to approximate real observation dates by different
telescopes in January 2004 (UTC): 20.289 (VLT), 21.124 (Spitzer), 21.289 (VLT), 22.289
(VLT), 22.589 (CFHT), 23.289 (VLT), 24.289 (VLT), and 30.589 (CFHT). The ! 1◦

angular separation between the Spitzer spacecraft and Earth-bound observatories as seen
from the MBOs lead to strikingly different motions and relative locations depending on
the observer location. Note that the lines do not correspond to the precise paths of the
objects, but merely connect simulated positions of the same object to help guide the eye.

According to extensive simulations (see, e.g., Kubica et al. 2007), the number

33
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Linking large-parallax asteroid astrometry 487

Fig. 7. The normalized heliocentric and Spitzer-centric distance uncertainties (left and center, respectively) and the solar phase-angle uncertainties (right) as functions
of the normalized observational angular arc. The distance uncertainties, the solar phase-angle uncertainties, and the observational angular arc resulting from the real
observations, σr,real, σ",real, σPA,real, and "αreal, respectively, are given relative to the results obtained for simulated geocentric observations at the same dates as
the real observations, σr,geoc, σ",geoc, σPA,geoc, and "αgeoc, respectively. The lines corresponds to the least-squares-fitted power-law functions y ∝ xb , where b

is −1.7 for the distance uncertainties, and −1.5 for the phase-angle uncertainty.

e.g., a one-kilometer asteroid with geometric albedo pV = 0.05
results in V ∼ 23.5. Thus, it is not surprising that 10% to 30%
of the Spitzer objects remain unlinked.

If the constraint regarding trends in the O − C residuals is
removed, we can find at least one linkage to all but four Spitzer
SNSs, that is, 0c, 0h, 0j, and 5l. One could imagine that trends
might erroneously arise due to exiguous data and comparatively
large uncertainties, but since the behavior of O − C residuals
stemming from scanty data has not been studied in depth, we
assume that only those linkages which do not show any trends
may be correct.

The importance of the parallax for reducing the distance and
phase-angle uncertainties can be seen in Fig. 7.

The distance uncertainties, the solar phase-angle uncertain-
ties, and the observational angular arc—the angular differ-
ence between the observed coordinates of the first and the last
observation—resulting from the real observations are given rel-
ative to the results obtained for simulated geocentric obser-
vations at the same dates as the real observations. Thus, the
observational angular arc for the simulated observations only
reflects the motions of the asteroid and the Earth, whereas the
angular arc stemming from the real observations also depend
on the different locations of the telescopes at a given instant,
that is, the parallax. By fitting power-law functions to the data
in the least-squares sense, the following proportionalities are
obtained:

σr,real

σr,geoc
∝

(
"αreal

"αgeoc

)−1.7

,
σ",real

σ",geoc
∝

(
"αreal

"αgeoc

)−1.7

,

σPA,real

σPA,geoc
∝

(
"αreal

"αgeoc

)−1.5

,

where σ is the length of the interval corresponding to 99.73% of
the total probability mass, "α is the observational angular arc, r
is the heliocentric distance, " is the topocentric distance, PA is
the solar phase angle, real denotes real observations, and geoc
denotes simulated geocentric observations. Note that the ratio
between the angular arcs depends on the observational time arc.
The longer the time arc, the smaller the normalized angular arc.
Hence, the relative reduction of the uncertainty is larger for ob-

jects having short observational time intervals than for objects
having long observational time intervals (cf. Table 8). In the
current case, only observational time intervals shorter than ap-
proximately two days lead to more than hundredfold reductions
in the uncertainties as compared to a single geocentric observer.

Even though the !1◦ angular difference between Earth-
based telescopes and the Spitzer spacecraft, as seen from an
MBA, may seem small, the differences in the motion and rel-
ative locations of the observed MBAs is nevertheless striking
when comparing the different viewing geometries. Fig. 8 shows
simulated positions of nine identified Spitzer objects with well-
established orbits at approximate real observation dates as seen
by Spitzer and by a geocentric observer.

The plot underscores the requirement that successful link-
ing of large-parallax astrometry should be based on solid orbit
computation methods that take into account aspects such as par-
allaxes, light-time corrections, and observational uncertainties.
Notice that the apparent motion of most of the asteroids changes
direction—the definition of the two stationary points—at differ-
ent dates depending on the viewing direction.

6. Conclusions

As of November 6th, 2006, 20 of the 34 Spitzer FLS/EPC as-
teroid SNSs have been identified as objects previously known,
or later accepted by the MPC. Of the remaining 14 SNSs, four
can fairly reliably be linked with at least one SNS of follow-
up observations, whereas ten SNSss (0c, 0h, 0j, 5b, 5c, 5d, 5g,
5i, 5j, and 5l) remain unidentified and unlinked. By relaxing
the requirements regarding trends in the motion—a question-
able requirement due to exiguous data which can easily lead to
suspicious chance alignments—linkages or identifications can,
nevertheless, be found to all but four Spitzer SNSs (0c, 0h,
0j, and 5l). The results suggest that linkage chains containing
at least five SNSs are required to produce unambiguous link-
age configurations when linking large-parallax observations far
from the direction of opposition.

Based on the simulations, we can, on one hand, be confident
that virtually all, if not all, correct Spitzer linkages have been
found. We have thus shown that the eMAC method is a viable

Parallax on MBOs�
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Figure 8: An example of a 3-linkage found between single-night observation sets from
different apparitions. The observations are linked with a single NEO-type orbit over a
time span of approximately 21 years with an rms error of 0.48′′ in R.A. and 0.98′′ in
Dec. Starting from the left, the provisional designations for the observation sets are
1996 WS3, 1983 VV6, and 2004 TQ363. The Sun and the Earth’s orbit are also shown.
Note that whereas this particular linkage is not necessarily correct, it proves that the
long-term linking method is capable of finding realistic linkages over long time intervals
using extremely scarce data.

of false-positive detections for Pan-STARRS is equal to the number of true detec-
tions on the ecliptic for a 5-σ detection limit, which means that only signals five
times stronger than the standard deviation of the background noise are accepted.

34

Linkages between �
3 single-night sets �
of NEO astrometry�

over 21 years.�



Markov Chain Monte Carlo�



A Markov Chain is a 
sequence of random 
numbers following an 

arbitrarily complicated 
distribution.�



Metropolis-Hastings�
!   Let q (P1;P2) be the proposal density for 

orbit P1 which is used to generate orbit P2. �

!   A trial orbit P’ is accepted after comparison 
with the last accepted orbit P if a random 
value α belonging to U(0,1) satisfies�

! <
p( !P ) q(P; !P )
p(P) q( !P ;P)

!   A symmetric proposal density is preferred as 
q (P1;P2) = q (P2;P1) and the q terms cancel.�



Schneider (2011)�
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Figure 4: Angular positions of the mock track observations for two LSST visits. In the two
scenarios considered, either orbit model 1 or 2 is observed in visit 2 (which is 40 minutes after
visit 1). The solid black line shows the input orbit model 1. Because the blue tracks for orbit
model 2 in visit 2 are so close to orbit model 1 in the sky, there is a significant chance of
incorrectly linking orbit 1 to the blue tracks for orbit 2.
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Schneider (2011)�Figure 2: Posterior samples of the six equinoctial orbital elements given a single LSST visit.
The diagonal panels show the marginal posterior probability distribution estimates for each of
the equinoctial parameters. The vertical dashed lines in each diagonal panel indicate the input
values for the mock data that was used to constrain the parameters. The lower-triangular
panels show samples from the 2D marginal posteriors for parameter pairs where darker points
indicate a larger density of samples. The upper-triangular panels are contour-plots of the
same samples plotted in the lower-triangular panels.
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Schneider (2011)�Figure 5: Two-dimensional projections of posterior samples of the orbital elements given
observations from one or two LSST visits. The panels are arranged identically to Fig. 2 and
the red points and lines are showing the same MCMC samples as in Fig. 2, which are samples
from the posterior given only observations in the first LSST visit (object 1). The blue points
and lines show the posterior given observations in two visits when the tracks in each visit
correspond to the same object (object 1). (That is why the blue lines in the diagonal panels
tighten around the vertical dashed lines denoting the “true” parameter values.) The green
points and lines show the posterior given observations of a distinct object in the second of two
visits (object 2). And the purple points and lines show the posterior given observations from
two visits with the each visit observing a different object (objects 1 and 2). So, the purple
points and lines are analogous to the blue points and lines but when the tracks in the two
visits are erroneously linked.
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OpenOrb �
!   open-source orbit-computation package�

!   includes all the orbital inversion methods 
discussed and much more...�

!   object-oriented Fortran95 + Python bindings�

!   used by Pan-STARRS, LSST, NEOSSat, etc in 
addition to individual researchers �

!   GNU General Public License v3 �

! http://code.google.com/p/oorb/�



The Bayesian formalism and the 
statistical inverse theory is a viable 

means to compute rigorous estimates for 
the orbital uncertainty.�


