Bayesian Orbit Computation

Mikael Granvik, U. Helsinki
Collaborators (alphabetic order):
Edward Bowell, Teemu Laakso, Karri Muinonen, Dagmara Oszkiewicz, Jenni Virtanen

Orbital uncertainty is an important factor in many applications but a rigorous estimate for it can be challenging to obtain.

When is uncertainty information required?

- linking astrometric data sets to specific objects (AKA cross-correlation, identification)
- planning of follow-up observations
- recovery of lost objects
- collision-probability estimation
- object classification
- in preparation of initial conditions for orbital integrations that are carried out to study the dynamics of a specific real object

observation (R.A. \& Dec.)

=

theoretical prediction
$+$
systematic noise
+
random noise

observation

=
 theoretical prediction
 $+$
 random noise

The theoretical prediction is a nonlinear function of the orbital elements. The equations are usually linearized, but
the validity of the Gaussian approximation was not questioned until...

Asteroid Orbit Determination Using Bayesian Probabilities

Karri Muinonen ${ }^{1}$ and Edward Bowell
Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, Arizona 86001

Received January 6, 1993; revised April 28, 1993

Bayesian (AKA statistical) inversion fundamentally means that the
parameters to be solved for (e.g., orbital elements P) are treated probabilistically and their posterior probability density function is defined as

$$
p(P \mid \Phi)=\frac{p(P) p(\Phi \mid P)}{p(\Phi)}
$$

or just

$$
p(P \mid \Phi) \propto p(P) p(\Phi \mid P)=p(P) \exp \left[-\frac{1}{2} \chi^{2}\right]
$$

Statistical Ranging

Virtanen et al. 2001, MCMC version Oszkiewicz et al. 2009

$$
\begin{gathered}
\alpha_{1}+\Delta \alpha \\
\delta_{1}+\Delta \delta \\
\rho \\
\alpha_{2}+\Delta \alpha \\
\delta_{2}+\Delta \delta
\end{gathered}
$$

Criterion for acceptance:
$\Delta X^{2}<\Delta X^{2} \lim$

$$
\Phi_{\mathrm{ij}}-\varphi_{\mathrm{ij}}(P)<n \sigma_{\mathrm{ij}}(n \geq 3)
$$

Muinonen et al. 2006

Spitzer-centric view

Parallax on MBOs

Granvik et al. 2007

Linkages between 3 single-night sets of NEO astrometry over 21 years.

Markov Chain Monte Carlo

A Markov Chain is a sequence of random numbers following an arbitrarily complicated distribution.

Metropolis-Hastings

- Let $q\left(P_{1} ; P_{2}\right)$ be the proposal density for orbit P_{1} which is used to generate orbit P_{2}.
- A trial orbit P^{\prime} is accepted after comparison with the last accepted orbit P if a random value α belonging to $\mathrm{U}(0,1)$ satisfies

$$
\alpha<\frac{p\left(P^{\prime}\right) q\left(P ; P^{\prime}\right)}{p(P) q\left(P^{\prime} ; P\right)}
$$

- A symmetric proposal density is preferred as $q\left(P_{1} ; P_{2}\right)=q\left(P_{2} ; P_{1}\right)$ and the q terms cancel.

Schneider (2011)

Schneider (2011)

Schneider (2011)

OpenOrb

- open-source orbit-computation package
- includes all the orbital inversion methods discussed and much more...
- object-oriented Fortran95 + Python bindings
- used by Pan-STARRS, LSST, NEOSSat, etc in addition to individual researchers
- GNU General Public License v3
- http://code.google.com/p/oorb/

The Bayesian formalism and the statistical inverse theory is a viable means to compute rigorous estimates for the orbital uncertainty.

