

Development of the Semi-analytical Satellite Theory and Applications

Paul J. Cefola

Consultancy in Aerospace Systems, Spaceflight Mechanics, and Astrodynamics Adjunct Faculty, Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY) *e-mail: paulcefo@buffalo.edu, paul.cefola@gmail.com*

International Symposium on Orbit Propagation and Determination 26-28 September, 2011 Lille, France rev

rev 10

Cowell Equations of Motion

$$x'' = -\frac{\mu}{r^3}x + Q(x, x', t)$$

- Semi-Analytical Satellite Theory
 - Equations of Motion for the Mean Elements

$$\frac{d\overline{a}_i}{dt} = \sum_{j=1}^N \varepsilon^j A_{i,j}(\overline{a}) + O(\varepsilon^{N+1}) \qquad (i = 1, 2, \dots, 5)$$

- Analytical Expressions for the Short-Periodic Motion

$$a_i = \overline{a}_i + \sum_{j=1}^N \varepsilon^j \eta_{i,j}(\overline{a}, \overline{\lambda}) + O(\varepsilon^{N+1}) \qquad (i = 1, 2, \dots 5)$$

What is a Semi-Analytical Satellite Theory? --Short-Period Motion Formulas

Zonal Harmonics (closed form)

$$\Delta a_i = C_{i,0} + S_{i,0}(L - \lambda) + \sum_{k=1}^{2N+1} \left[C_{i,k} \cos(kL) + S_{i,k} \sin(kL) \right]$$

Tesseral m-Dailies (closed form)

$$\Delta a_i = \sum_{k=1}^{M} \left[C_{i,k} \cos(k\theta) + S_{i,k} \sin(k\theta) \right]$$

Tesseral Linear Combination Terms

$$\Delta a_i = \sum_k \sum_t \left[C_{i,t,k} \cos(t\lambda - k\theta) + S_{i,t,k} \sin(t\lambda - k\theta) \right]$$

Lunar-Solar Point Masses (closed form)

$$\Delta a_{i} = C_{i,0} + \sum_{k=1}^{N+1} \left[C_{i,k} \cos(kF) + S_{i,k} \sin(kF) \right]$$

 Semi-analytical Theory for the Partial Derivatives

$$\frac{d}{dt}B_2 = AB_2 \text{ with } [B_2]_{t_0} = I$$

$$\frac{d}{dt}B_3 = AB_3 + D$$
 with $[B_3]_{t_0} = [0]_{6x(l-6)}$

What is a Semi-Analytical Satellite Theory? -- Interpolator

- Interpolator Structure
 - Hermite Interpolators for the mean elements
 - Lagrangian Interpolators for the Fourier coefficients in the short-periodic expansions
 - Hermite interpolators for the mean element state transition matrix and the mean element partial derivatives
 - Position and Velocity interpolators for dense output grids
- Interpolator Strategy
 - Construct the first set of interpolators
 - Use until the output request time is outside the current interpolator interval
 - Construct interpolators for the next interpolation interval

Least Squares Fit of SST Theory to TOPEX Orbit – Along-Track Fit Errors

• Analytical Averaging: $\frac{d\overline{a}_i}{dt} = \sum_{j=1}^6 (\overline{a}_i, \overline{a}_j) \frac{\partial}{\partial \overline{a}_j} \left[\frac{1}{2\pi} \int_0^{2\pi} R d\overline{M} \right]$

• Numerical Averaging: $\frac{d\overline{a}_i}{dt} = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial \overline{a}_i}{\partial x} \bullet Q d\overline{M}$

- Expression in spherical harmonics relative to the ECI frame
 - radial distance, latitude, and longitude
- Rotation of the spherical harmonics to the equinoctial orbital frame
 - Jacobi polynomials replace the Kaula inclination functions
 - stable recursion formulas are available in the mathematical literature
- Products of radius to a power times sin or cos of true longitude (and multiples) are expanded as a Fourier series in the mean longitude
 - Modified Hansen coefficients replace the Kaula eccentricity functions
 - stable recursion formulas due to Hansen (1855) were rediscovered in the astronomical literature
 - Jozef Van Der Ha translation of the Hansen manuscript to English (1978)

Rotation of the Spherical Harmonics

Generating function

$$P_{nm}(\sin\phi)e^{jm\alpha} = \sum_{r=-n}^{n} \frac{(n-r)!}{(n-m)!} P_{n,r}(0) S_{2n}^{(m,r)}(p,q)e^{jrL}$$

• where (for $m \ge 0$)

$$S_{2n}^{(m,r)}(p,q) = (1+p^2+q^2)^r (p-jq)^{m-r} P_{n+r}^{(m-r,-m-r)}(\gamma)$$

r < -m

$$S_{2n}^{(m,r)}(p,q) = \frac{(n+m)!(n-m)!}{(n+r)!(n-r)!} (1+p^2+q^2)^{-m} (p-jq)^{m-r} P_{n-m}^{(m-r,r+m)}(\gamma) -\mathbf{m} \le \mathbf{r} \le \mathbf{m}$$

$$S_{2n}^{(m,r)}(p,q) = (-1)^{m-r} (1+p^2+q^2)^{-r} (p+jq)^{r-m} P_{n-r}^{(r-m,r+m)}(\gamma)$$

• and $\gamma = \cos i$

Consultancy in Aerospace Systems, Spaceflight Mechanics, & Astrodynamics

LLNL DSST-9.ppt PJC 9/27/2011

Hansen Coefficients

Generating Function

$$(r/a)^n e^{isf} = \sum_{t=-\infty}^{t=+\infty} X_t^{n,s} e^{itM}$$

Recursion Relation employed in Tesseral Resonance

$$n[(n-2)^{2} - m^{2}]\cos^{2}\varphi X_{t}^{n-4,m} = n(n-2)(2n-3)X_{t}^{n-3,m}$$
$$-(n-1)[n(n-2) + 2tm\cos\varphi]X_{t}^{n-2,m} + t^{2}(n-2)X_{t}^{n,m}$$

• Special Case (t=0; zonal harmonics)

$$n[(n-2)^{2} - m^{2}]\cos^{2}\varphi X_{0}^{n-4,m} = n(n-2)(2n-3)X_{0}^{n-3,m}$$
$$-(n-1)[n(n-2)]X_{0}^{n-2,m}$$

Standard Expansion

$$X_{t}^{n,s} = e^{|t-s|} \sum_{i=0}^{\infty} X_{i+a,i+b}^{n,s} e^{2i}$$

 $a = \frac{|t-s|+t-s|}{2}$ $b = \frac{|t-s|-(t-s)}{2}$

New Expansion

$$X_t^{n,s} = (1 - e^2)^{n + \frac{3}{2}} e^{|t-s|} \sum_{i=0}^{\infty} Y_{i+a,i+b}^{n,s} e^{2i}$$

Convergence for the set of Hansen coefficients $X_t^{n,s}$ at e = 0.7 with relative accuracy 1.0D-5

n	S	t	Ν	Υ
-3	0	1	17	6
-3	2	1	9	9
-4	-1	1	20	7
-4	1	1	20	7
-5	0	2	22	6
-5	2	2	23	7
-6	-1	1	25	6
-6	1	1	26	5
-6	-1	2	25	7
-6	1	2	25	7

Semi-analytical Theory -- Analytical **Averaging Software Architecture**

Semi-analytical Theory -- Analytical Short-Periodic Model Software Architecture

- Subroutine SPZONL(COSC, SINC, NMAX, LMAX, KMAX)
- COSC is the output array of cosine coefficients in the true longitude expansion
- SINC is the output array of sine coefficients in the true longitude expansion
- NMAX is the input maximum power of (R_e/a)
- LMAX is the input maximum power of the eccentricity
- KMAX is the input maximum power of exp (iL)
- The <u>slowly varying</u> portion of the <u>mean equinoctial element</u> set

SPZONL Example Output

EXPANSION IN S	SINES AND COSINES OF	J*L				
TIME AFTER B	ZPOCH = 0 DAYS	0 HOURS 0 MIN	UTES 0.00 SECON	DS. EL	APSED TIME =	0.00 SECONDS.
NON-TRIGONOME TERM	DA (KM)	DH	DK	DP	DQ	DLAMBDA (RAD)
CONSTANT	-1.7936800143E-05	-4.5316345886E-07	1.0244989879E-06	-8.4134274777E-12	-2.4872353647E-12	-1.6180058541E-11
L - LAMBDA	0.00000000	7.6236983515E-07	2.9112772927E-07	-2.8571165071E-05	6.0355983045E-05	-7.9599431963E-04
COSINE COREEL	CIENTS					
J	DA (KM)	DH	DK	DP	DQ	DLAMBDA (RAD)
1	2.2488807229E-02	2.8332334139E-04	-9.6149267404E-04	4.4577677456E-08	-2.4719456990E-08	9.0754448003E-07
2	-6.229395462	5.4751551215E-07	1.7814934626E-06	-3.0177991523E-05	1.4285582535E-05	-8.7576508376E-04
3	4.7793807529E-03	-6.6108842065E-04	-5.4179555325E-04	7.8927955274E-09	-8.2398189967E-09	7.8275146435E-07
4	3.3313343668E-07	5.3441939672E-07	1.7814962564E-07	0.000000000	0.000000000	-2.8850057891E-10
5	-5.2497420954E-10	-9.6166834368E-11	4.1391427535E-12	0.00000000	0.00000000	4.5295356765E-14
SINE COEFFICI	LENTS					
J	DA (KM)	DH	DK	DP	DQ	DLAMBDA (RAD)
1	-1.1080264328E-02	-4.9709688639E-04	2.8332358407E-04	2.4719456990E-08	-9.1934450620E-08	1.9563249626E-06
2	7.600987375	1.5547734378E-06	-1.2276380687E-06	1.4285582535E-05	3.0177991523E-05	-7.1773391564E-04
3	-1.4337350939E-02	-5.4179556103E-04	6.6108860131E-04	-8.2398189967E-09	-7.8927955274E-09	2.6093155308E-07
4	7.7398606271E-06	1.7814962564E-07	-5.3441939672E-07	0.00000000	0.000000000	1.2417431523E-11
5	-1.2151786653E-09	4.1391427535E-12	9.6166834368E-11	0.00000000	0.00000000	-1.9568228766E-14

Short-Periodic Coefficient Interpolator Errors

Points	Step (days)	Zonal Errors*			
		4C _a (m)	⁴ C ₁₀ (m)	ΔC _λ (m)	
2	.25	.86	.054	.76	
	.5	3.5	.25	3.1	
	1.	14.0	1.0	12.	
3	.25	.012	0	.011	
	.5	.098	.004	.035	
	1.	.78	.029	.69	
4	.25	0	0	0	
	.5	.002	0	.002	
	1.	.015	.004	.021	

*These errors are the position errors caused by errors in the interpolated coefficients For the 2 lambda short-periodics. The stepsize is the interval between successive interpolation points.

Truncated J₂² Modeling in DSST Leads to Errors for Eccentric Orbits

 J2-squared contributions to the averaged equations of motion

$$A_{i,2} = \left\langle \sum_{k=1}^{6} \eta_{k,1} \frac{\partial F_i}{\partial \overline{a}_k} \right\rangle_{\overline{\lambda}}$$

$$A_{6,2} = \left\langle \sum_{k=1}^{6} \eta_{k,1} \frac{\partial F_6}{\partial \overline{a}_k} + \frac{15}{4} \frac{\overline{n}}{\overline{a}_1^2} \eta_{1,1}^2 \right\rangle_{\overline{\lambda}}$$

 The F_i's are the RHS of the osculation equinoctial element equations of motion

Outline for J₂² Modeling Enhancement for DSST

- Develop closed form expressions for J2 disturbance potential functions using Zeis' maxima blocks
 - Fischer (1998), updated in 2011
- Develop closed-form solutions to VOP equations of motion (F functions) using Zeis' maxima blocks
 - Fischer (1998), updated in 2011
- Determine partials of F functions with respect to orbital elements
 - analytical approach
 - finite difference approach for testing
- Determine the first order zonal periodic function C and S coefficients using Slutsky's SPZONL routine
- Develop summations of the products of the first order zonal periodic functions with the partials of the F functions
- Average the summations over the fast variable

TOPEX External Reference Orbits

- Intensive tracking
 - Satellite laser ranging
 - Differential GPS
 - DORIS on-board device (TOPEX)
- Very precise force models
 - JGM-2 70x70 Gravity Field
 - Lunar-Solar Point Masses
 - Solid Earth Tides
 - Atmosphere Drag (Jacchia-Roberts density)
 - Solar Radiation Pressure (Conical Model)
 - Earth Radiation Pressure
 - Ocean Tides
 - Rotational Deformation
- 15 cm maximum error, over the whole orbit (TOPEX)
 - NASA Goddard, University of Texas, CNES

Semianalytical Satellite Theory Modeling of the TOPEX Orbit

- Dynamics
 - Mean Element Equations of Motion
 - 50 x 50 Geopotential (truncated JGM 2)
 - Lunar-Solar Point Masses
 - **Atmosphere Drag (Jacchia-Roberts)**
 - Solar Radiation Pressure
 - Solid Earth Tides (solar & lunar terms)
 - Short Periodic Terms
 - Zonals, Tesseral M-dailies, Tesseral Linear Combinations
 - J2 / Tesseral M-daily Coupling
 - Integration Coordinate System Mean of J2000.0
- Solve-for Vector
 - Mean Equinoctial Elements
 - Solar Radiation Pressure Coefficient
 - Drag Coefficient

Least Squares Fit of SST Theory to TOPEX External Reference Orbit – Radial Fit Errors

Least Squares Fit of SST Theory to TOPEX Orbit – Cross-Track Fit Errors

Least Squares Fit of SST Theory to TOPEX Orbit – Along-Track Fit Errors

Sirius 24 hr Elliptical Orbit Ground Track

DSST and USM Mean Semi-Major Axis Time Histories (Sirius Case)

Consultancy in Aerospace Systems, Spaceflight Mechanics, & Astrodynamics

LLNL DSST-26.ppt PJC 9/27/2011

- Compare with Anselmo & Pardini 2009 perturbation model:
 - 16 \times 16 truncation of the EGM-96 gravity model
 - lunar and solar third body attraction, SRP with eclipses
 - area-to-mass ratios set to 0.05 m^2/kg
- Significant sample of GPS orbits: one for each Block II plane
 - appropriate spread in a, λ , i
- Epoch referred to April 16, 2007; $\Delta a = a 26559$ km

	UTC (h:m:s)	Δa	$10^3 e$	i (deg)	ω (deg)	Ω (deg)	M (deg)
A3	27:05:55.335	1.826	9.6227	56.0150	159.9943	72.5607	200.3662
Β1	00:46:42.433	0.890	4.1632	55.2000	315.4985	130.7562	44.2377
C4	07:29:14.720	0.616	2.6456	54.9919	189.3242	190.2977	170.6826
D1	35:03:07.094	0.355	8.7123	54.2489	130.4077	249.6308	230.3125
E2	17:28:58.794	1.432	4.8672	54.5093	265.1898	312.7360	94.2809
F4	23:06:57.974	1.259	4.6480	55.6068	150.7686	9.9670	230.3125

GPS Mean Semi-major Axes, 30 year Evolution

Left: DSST runs; Right: SATRAP runs from Anselmo & Pardini 2009

- We have described a comprehensive semi-analytical satellite theory that uses the mean equinoctial variables as the fundamental constants
- Extensive force modeling 50 x 50 geopotential, third-body point masses, solid Earth tides, drag, solar radiation pressure
- The theory has been tested against a variety of data most recently SLR and precise GPS solutions
- The theory has proven to be portable to a variety of computer platforms, operating systems, and organizations – currently employed under Linux
- The theory is the basis of the Aerospace Corp MEANPROP program
- The mean equinoctial elements have proven advantageous in Orbit Determination applications – Batch Least Squares, Extended Semi-analytical Kalman Filters (ESKF), BSESKF

- Accessibility currently thru the Linux GTDS R&D or the DSST Standalone programs
- Current J₂-squared eccentricity truncation
- Fortran 77 source code limits accessibility to modern computer hardware concepts such as Graphical Processor Unit (GPU)

- Partially address accessibility through Web access to the DSST Standalone (Astrodyn Web framework)
 - Presentation next week by J.F. San Juan (U. Rioja) at the IAF IAC in Capetown
- Evolve the current source code to more modern Fortran (90, 95, or 2003)
- Develop an Object Oriented DSST code C++, JAVA
- Develop an Open Source DSST capability
- Review early work on parallel algorithms to take advantage of the new computer hardware
- J2-squared development
- Evolve the state transition matrix capabilities
- Arbitrary central body capability

- Wayne McClain application of the Generalized Method of Averaging in DSST
- Leo Early interpolation strategy, early s/w development, version control
- Dr. Mark Slutsky recursive zonal harmonic and third-body point mass short-periodics models
- Dr. Ron Proulx recursive tesseral resonance, tesseral mdaily and linear combination short-periodic models, Hansen coefficients
- Stephen Taylor integration of semi-analytical satellite theory and Extended Kalman Filter concepts
- Dan Fonte expansion of the recursive models to 50 x 50
- *Scott Carter* integration of 50 x 50 and J2000 integration coordinate system
- Jack Fischer highly elliptical orbits
- Zachary Folcik DSST in the Linux environment, testing of DSST vs very high accuracy observation data at MIT LL, BSESKF development