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Introduction 

• History 
 
In the field of orbital motion perturbation methods, a half century of works has produced a lot 
of analytical theories. These theories are either based on Hamiltonian developments and 
series expansions of the perturbing functions (Von-Zeipel, Brouwer, Lie-Deprit), or use 
iterative approximation algorithms (Kozaï, Kaula). The differential system of the Lagrange 
Planetary Equations has also been solved using Cook’s algorithms.  

 
• Actual 

Generally speaking, analytical theories have difficulties to deal with high eccentricity orbits, 
due to series expansions or due to the large number of terms in closed forms. 

 
• Solving the high eccentricity problem 

The present work  com back  to the original Lagrange’s equations. The Restricted Three Body 
Problem for an high eccentricity satellite orbit is solved in osculating elements. 

 
Solar, lunar and direct Solar Radiation Pressure potentials are simplified. 
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Lagrange Planetary Equations in the Restricted Three Body Problem 

• System of osculating equations 

The second members of the equations are the partial derivatives of the third body potential or 
the direct Solar Radiation Pressure potential in a quasi-inertial frame. 

 
• Quasi-inertial frame 
This is the Veis quasi_inertial frame fixed at the epoch 1950 00h00’00’’. 
 
• Ephemerides of the Sun and the Moon 
Positions of the Sun and the Moon are from Newcomb and Brown theories. 
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Potentials (1) 

•  Simplified potential of the Sun and the Moon 

=3*μs*a/rs^5*(1-e^2)^2*(xs^2*(-cos(i)*sin(Ω)*sin(v+ω))^2+2*ys^2*cos(Ω)*cos(i)*cos(v+ω)*sin(Ω)*sin(v+ω)-2*xs^2*cos(Ω)
*cos(i)*cos(v+ω)*sin(Ω)*sin(v+ω)+2*xs*ys*cos(Ω)^2*cos(i)*cos(v+ω)*sin(v+ω)-2*xs*ys*cos(i)*cos(v+ω)*sin(Ω)^2*sin(v
+ω)-2*xs*ys*cos(Ω)*cos(i)^2*sin(Ω)*sin(v+ω)^2+2*xs*ys*cos(Ω)*cos(v+ω)^2*sin(Ω)+ys^2*cos(Ω)^2*cos(i)^2*sin(v+ω)
^2+ys^2*cos(v+ω)^2*sin(Ω)^2+xs^2*cos(Ω)^2*cos(v+ω)^2+2*ys*zs*cos(Ω)*cos(i)*sin(i)*sin(v+ω)^2-2*xs*zs*cos(i)*sin(Ω)
*sin(i)*sin(v+ω)^2+2*ys*zs*cos(v+ω)*sin(Ω)*sin(i)*sin(v+ω)+2*xs*zs*cos(Ω)*cos(v+ω)*sin(i)*sin(v+ω)+zs^2*sin(i)^2*sin(v
+ω)^2+1*(-(rs^2))/3)/(1+e*cos(v))^2 

Example of a partial derivative : 

In the inertial frame : 
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Potentials (2) 

• Simplified potential of the direct Solar Radiation 
Pressure 

=(-σ)*A/M*(1-e^2)/rs*(ys/(1+e*cos(v))*cos(Ω)*cos(i)*sin(v+ω)-xs/(1+e*cos(v))*cos(i)*sin(Ω)*sin(v+ω)+zs/(1+e*cos(v))*sin(i)
*sin(v+ω)+ys/(1+e*cos(v))*cos(v+ω)*sin(Ω)+xs/(1+e*cos(v))*cos(Ω)*cos(v+ω)) 

In the inertial frame : 

Example of a partial derivative : 
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Integration of the Osculating Lagrange Planetary Equations (1) 

• Variable of integration : the true anomaly 
with 

• Integrals 

Example for   where the characteristical primitives are : 
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Integration of the Osculating Lagrange Planetary Equations (2) 

• Elliptic function in the primitives 

 
 
Alternate form for program computation 
 
 
Graphs of the elliptic function 

• Number of characteristical primitives 

15 for the third body problem 
8 for the SRP problem 
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Integration of the Osculating Lagrange Planetary Equations (3) 

• Constants of the integrals 
 
Each integral is controled by : 

-  the step of the elliptic function at the value of π of the true anomaly, 
 
- the value of zero of the integral at the interval lower bound. 

• Consistency 
The reduction of the interval bounds of the definite integrals allows to converge to the true 

solution. 

•  Equation of time 
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Computation algorithm 

• Analytical step 

- compute the integrals and solve the differential system of the Lagrange Planetary Equations, 

- compute the equation of time. 

 
 
• Numerical step 

- update each keplerian element, 

- update the position of the third body, 

- return to the analytical step and so on. 
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Geostationary Transfer Orbit lunar effects  
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Geostationary Transfer Orbit solar effects  
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Geostationary Transfer Orbit SRP effects  
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High Elliptic Orbit lunar effects  
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High Elliptic Orbit solar effects  
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High Elliptic Orbit SRP effects  
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Mean Earth Orbit lunar effects  
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Mean Earth Orbit solar effects  
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Mean Earth Orbit SRP effects  
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Results (10) 

•  Understanding 
SIMPLIFIED MODELS OF THE POTENTIALS 
OSCULATING INTEGRATION 
EXACT INTEGRATION WITHOUT ANY SIMPLIFYING ASSUMPTION  
VALIDITY FOR ALL THE ECCENTRICITIES EXCLUDING THE NULL VALUE 
MATHEMATICAL CONSISTENCY OF THE METHOD 
 
but 
DIFFICULTY WITH THE PERIGEE EVEN WHEN THE DIFFERENTIAL SYSTEM IS WELL 

INTEGRATED 
THE ACCURACY REDUCES WHEN THE ALTITUDE IS VERY HIGH 
NOT OPTIMIZED COMPUTATION 
 
•  Hypothesis 
MIXING PERIGEE AND MEAN ANOMALY 
THE REDUCED ACCURACY DUE TO THE SIMPLIFIED MODEL OF THE LUNAR POTENTIAL 
BETTER ACCURACY WITH AN OPTIMIZED COMPUTATION 
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Conclusion 

•  The Osculating Lagrange Planetary Equations for simplified modelisation 

It is a simple method intellectually efficient to analyse each effect of the Sun and of the Moon 
over one orbital period. Moreover, a long duration simulation allows to observe the secular 
effects on the orbital parameters. 

 
The osculating formulas could complement other modelisations. 
The coupling with the gravitationnal first zonal term J2 provides a simple conservative model. 
Moreover, the numerical-analytical method allows to built a complete modelisation in General 

Perturbations. 
 

•  To be continued 

The order 3 of the third body potential is realizable. 
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