Analytical Integration of the Osculating Lagrange Planetary Equations for the Third Body and the SRP Perturbations in the Orbital Motion

Denis HAUTESSERRES

International Symposium on Orbit Propagation and Determination, Lille, France

26-28, September, 2011

Introduction

story
he field of orbital motion perturbation methods, a half century of works has produced a l analytical theories. These theories are either based on Hamiltonian developments and ries expansions of the perturbing functions (Von-Zeipel, Brouwer, Lie-Deprit), or use rative approximation algorithms (Kozaï, Kaula). The differential system of the Lagrange anetary Equations has also been solved using Cook's algorithms.
tual
erally speaking, analytical theories have difficulties to deal with high eccentricity orbits, e to series expansions or due to the large number of terms in closed forms.

Iving the high eccentricity problem
present work com back to the original Lagrange's equations. The Restricted Three Boc oblem for an high eccentricity satellite orbit is solved in osculating elements.
ar, Iunar and direct Solar Radiation Pressure potentials are simplified.

lanetary Equations in the Restricted Three Body Problem

stem of osculating equations

$$
\begin{array}{cccccccc}
\frac{d a}{d t} & 0 & 0 & 0 & 0 & 0 & \frac{-2}{n a} & \frac{\partial R}{\partial a} \\
\frac{d e}{d t} & 0 & 0 & 0 & 0 & \frac{\sqrt{1-e^{2}}}{n a^{2} e} & \frac{e^{2}-1}{n a^{2} e} & \frac{\partial R}{\partial e} \\
\frac{d i}{d t} & 0 & 0 & 0 & \frac{1}{n a^{2} \sqrt{1-e^{2}} \sin i} & \frac{-\cot i}{n a^{2} \sqrt{1-e^{2}}} & 0 & \frac{\partial R}{\partial i} \\
\frac{d \Omega}{d t} & 0 & 0 & \frac{-1}{n a^{2} \sqrt{1-e^{2}} \sin i} & 0 & 0 & 0 & \frac{\partial R}{\partial \Omega} \\
\frac{d \omega}{d t} & 0 & -\frac{\sqrt{1-e^{2}}}{n a^{2} e} & \frac{\cot i}{n a^{2} \sqrt{1-e^{2}}} & 0 & 0 & 0 & \frac{\partial R}{\partial \omega} \\
\frac{d M}{d t}-n & \frac{2}{n a} & \frac{1-e^{2}}{n a^{2} e} & 0 & 0 & 0 & 0 & \frac{\partial M}{\partial M}
\end{array}
$$

e second members of the equations are the partial derivatives of the third body potential e direct Solar Radiation Pressure potential in a quasi-inertial frame.
uasi-inertial frame
s is the Veis quasi_inertial frame fixed at the epoch $195000 \mathrm{~h} 00^{\prime} 00^{\prime \prime}$.
hemerides of the Sun and the Moon sitions of the Sun and the Moon are from Newcomb and Brown theories.

Potentials (1)

Simplified potential of the Sun and the Moon

$$
U_{s}=\frac{\mu_{s}}{r_{s}}\left[1+\frac{3}{2}\left(\frac{r}{r_{s}}\right)^{2}\left(\cos ^{2} \theta-\frac{1}{3}\right)\right]
$$

ne inertial frame :

$$
\begin{aligned}
= & \frac{\mu_{s}}{r_{s}}\left(1+\frac{3}{2}\left(\frac{\frac{a\left(1-e^{2}\right)}{1+e \cos (v)}}{r_{s}}\right)^{2}\left(\left(\frac{1}{r_{s}}\right)^{2}\right.\right. \\
& \left((\cos (\omega+v) \cos (\Omega)-\sin (\omega+v) \cos (i) \sin (\Omega)) x_{s}+(\cos (\omega+v) \sin (\Omega)+\sin (\omega+v) \cos (i) \cos (\Omega)) y_{s}+\sin (\omega+v) \sin (i) z\right. \\
& \left.\left.-\frac{1}{3}\right)\right)
\end{aligned}
$$

$$
\text { ample of a partial derivative : } \frac{\partial U_{s}}{\partial a}
$$

 $i)^{\star} \cos (v+\omega)^{\star} \sin (\Omega)^{*} \sin (v+\omega)+2^{*} x s^{*} y s^{*} \cos (\Omega)^{\wedge} 2^{*} \cos (i)^{\star} \cos (v+\omega)^{\star} \sin (v+\omega)-2^{*} x s^{*} y s^{*} \cos (i)^{*} \cos (v+\omega)^{*} \sin (\Omega)^{\wedge} 2^{*} \sin (v$ $2^{*} x s^{*} y s^{*} \cos (\Omega)^{*} \cos (i) \wedge 2^{*} \sin (\Omega)^{*} \sin (v+\omega)^{\wedge} 2+2^{*} x s^{*} y s^{*} \cos (\Omega)^{*} \cos (v+\omega)^{\wedge} 2^{*} \sin (\Omega)+y s^{\wedge} 2^{*} \cos (\Omega)^{\wedge} 2^{*} \cos (i)^{\wedge} 2^{*} \sin (v+\omega)$ $s^{\wedge} 2^{*} \cos (v+\omega)^{\wedge} 2^{*} \sin (\Omega)^{\wedge} 2+x s^{\wedge} 2^{*} \cos (\Omega)^{\wedge} 2^{*} \cos (v+\omega)^{\wedge} 2+2^{*} y s^{*} z s^{*} \cos (\Omega)^{*} \cos (i)^{*} \sin (i)^{*} \sin (v+\omega)^{\wedge} 2-2^{*} x s^{*} z s^{*} \cos (i)^{*} \sin ($ ${ }^{\star} \sin (v+\omega)^{\wedge} 2+2^{*} y s^{*} z s^{*} \cos (v+\omega)^{*} \sin (\Omega)^{*} \sin (i)^{*} \sin (v+\omega)+2^{*} x s^{*} z s^{*} \cos (\Omega)^{*} \cos (v+\omega)^{*} \sin (i)^{*} \sin (v+\omega)+z s^{\wedge} 2^{*} \sin (i) \wedge 2^{*} \sin ($ $\left.2+1^{*}(-(r s \wedge 2)) / 3\right) /\left(1+e^{*} \cos (v)\right)^{\wedge} 2$

Potentials (2)

Simplified potential of the direct Solar Radiation

 Pressure$$
U_{S R P}=-\sigma \frac{A}{M} r \cos \theta
$$

ne inertial frame :

$$
\begin{aligned}
= & -\sigma \frac{A}{M} \frac{a\left(1-e^{2}\right)}{1+e \cos (v)}\left(\frac{1}{r_{s}}\right) \\
& \left((\cos (\omega+v) \cos (\Omega)-\sin (\omega+v) \cos (i) \sin (\Omega)) x_{s}+(\cos (\omega+v) \sin (\Omega)+\sin (\omega+v) \cos (i) \cos (\Omega)) y_{s}+\sin (\omega+v) \sin (i) z\right.
\end{aligned}
$$

$$
\text { ample of a partial derivative : } \quad \frac{\partial U_{S R P}}{\partial a}
$$

${ }^{*} A / M^{*}\left(1-e^{\wedge} 2\right) / r s^{*}\left(y s /\left(1+e^{*} \cos (v)\right)^{*} \cos (\Omega)^{*} \cos (i)^{*} \sin (v+\omega)-x s /\left(1+e^{*} \cos (v)\right)^{*} \cos (i)^{*} \sin (\Omega)^{*} \sin (v+\omega)+z s /\left(1+e^{*} \cos (v)\right)^{*} \sin (\right.$ $\left.+\omega)+y s /\left(1+e^{*} \cos (v)\right)^{*} \cos (v+\omega)^{*} \sin (\Omega)+x s /\left(1+e^{*} \cos (v)\right)^{*} \cos (\Omega)^{*} \cos (v+\omega)\right)$

Integration of the Osculating Lagrange Planetary Equations (1)

riable of integration : the true anomaly

h $\quad d t=\frac{1}{n} \frac{d M}{d v} d v \quad \frac{d M}{d v}=\frac{\left(1-e^{2}\right)^{\left(\frac{3}{2}\right)}}{(1+e \cos (v))^{2}}$

egrals

mple for $\quad \frac{1}{n} \int \frac{\partial U_{s}}{\partial a} \frac{d M}{d v} d v \quad$ where the characteristical primitives are :
$6\left(b^{2}+9\right) b \cos (x)+$ $\left.\left.b^{2}+36\right)\right) /\left(2(b-1)^{3}\right.$ $\left.(b+1)^{3}(b \cos (x)+1)^{3}\right)-$
$\left.\frac{6\left(3 b^{2}+2\right) \tanh ^{-1}\left(\frac{(b-1) \tan \left(\frac{x}{2}\right)}{\sqrt{b^{2}-1}}\right)}{\left(b^{2}-1\right)^{7 / 2}}\right)$
$\int \frac{\cos ^{2}(\omega+x)}{(1+b \cos (x))^{4}} d x=$
$\left(24 b^{7} \sin (x-2 \omega)+8 b^{7} \sin (3 x-2 \omega)-\right.$ $24 b^{7} \sin (x+2 \omega)+$
$8 b^{7} \sin (3 x+2 \omega)+8 b^{7} \sin (3 x)+$ $18 b^{6} \sin (2(x-\omega))+$
$18 b^{6} \sin (2(x+\omega))-16 b^{6}$
$\sin (2 \omega)-27 b^{5} \sin (x-2 \omega)+$
$9 b^{5} \sin (3 x-2 \omega)+$
$117 b^{5} \sin (x+2 \omega)+$
$9 b^{5} \sin (3 x+2 \omega)+22 b^{5}$
$9 b^{5} \sin (3 x+2 \omega)+22 b^{5}$
$\quad \sin (3 x)+54 b^{4} \sin (2(x-\omega))+$
$54 b^{4} \sin (2(x+\omega))+48 b^{4}$
$\sin (2 \omega)+102 b^{3} \sin (x-2 \omega)-$
$2 b^{3} \sin (3 x-2 \omega)-$
$42 b^{3} \sin (x+2 \omega)-$
$2 b^{3} \sin (3 x+2 \omega)-$
$12 b^{2} \sin (2(x-\omega))-$
$12 b^{2} \sin (2(x-\omega))-$
$12 b^{2} \sin (2(x+\omega))-$ $12 b^{2} \sin (2(x+\omega))$
$48 b^{2} \sin (2 \omega)+$
$48 b^{2} \sin (2 \omega)+$
$12\left(b^{2}+9\right) b^{4} \sin (2 x)+$
$6\left(4 b^{4}-3 b^{2}+24\right) b^{3} \sin (x)-$
$24 b \sin (x-2 \omega)+$
$24 b \sin (x+2 \omega)+16 \sin (2 \omega)) /$

$$
\left(96 b^{2}\left(b^{2}-1\right)^{3}(b \cos (x)+1)^{3}\right)-
$$

$\left(5 b^{2} \cos (2 \omega)+3 b^{2}+2\right)$
$\int \frac{\sin (\omega+x) \cos (\omega+x)}{(1+b \cos (x))^{4}} d x=\quad \int \frac{\sin ^{2}(\omega+x)}{(1+b \cos (x))^{4}} d x=$
$\left(24 b^{7} \cos (x+2 \omega)-8 b^{7} \cos (3 x+2 \omega)+\right.$
$18 b^{6} \cos (2(x-\omega))-$
$18 b^{6} \cos (2(x+\omega))+16 b^{6}$
$\cos (2 \omega)-117 b^{5} \cos (x+2 \omega)-$
$9 b^{5} \cos (3 x+2 \omega)+$
$54 b^{4} \cos (2(x-\omega))-$
$54 b^{4} \cos (2(x+\omega))-48 b^{4}$
$\cos (2 \omega)+42 b^{3} \cos (x+2 \omega)+$
$2 b^{3} \cos (3 x+2 \omega)-$
$12 b^{2} \cos (2(x-\omega))+$
$12 b^{2} \cos (2(x+\omega))+$
$48 b^{2} \cos (2 \omega)+$
$3\left(8 b^{6}-9 b^{4}+34 b^{2}-8\right) b$
$\cos (x-2 \omega)+\left(8 b^{4}+9 b^{2}-2\right)$
$b^{3} \cos (3 x-2 \omega)-$
$24 b \cos (x+2 \omega)-16 \cos (2 \omega)) /$
$\left(96 b^{2}\left(b^{2}-1\right)^{3}(b \cos (x)+1)^{3}\right)-$
$5 b^{2} \sin (\omega) \cos (\omega) \tanh ^{-1}\left(\frac{(b-1) \tan \left(\frac{x}{2}\right)}{\sqrt{b^{2}-1}}\right)$
$\left(b^{2}-1\right)^{7 / 2}$
constant

$$
\frac{\left(5 b^{2} \cos (2 \omega)-3 b^{2}-2\right) \tanh ^{-1}\left(\frac{(b-1) \tan \left(\frac{x}{2}\right)}{\sqrt{b^{2}-1}}\right)}{2\left(b^{2}-1\right)^{7 / 2}}
$$

$+\left(-24 b^{7} \sin (x-2 \omega)-\right.$
$8 b^{7} \sin (3 x-2 \omega)+$
$24 b^{7} \sin (x+2 \omega)-$
$8 b^{7} \sin (3 x+2 \omega)+8 b^{7} \sin (3 x)-$
$18 b^{6} \sin (2(x-\omega))-$
$18 b^{6} \sin (2(x+\omega))+16 b^{6}$
$\sin (2 \omega)+27 b^{5} \sin (x-2 \omega)-$
$9 b^{5} \sin (3 x-2 \omega)-$
$117 b^{5} \sin (x+2 \omega)-$
$9 b^{5} \sin (3 x+2 \omega)+$
$22 b^{5} \sin (3 x)-$
$54 b^{4} \sin (2(x-\omega))-$
$54 b^{4} \sin (2(x+w))-$
$48 b^{4} \sin (2 \omega)-$
$102 b^{3} \sin (x-2 \omega)+$
$2 b^{3} \sin (3 x-2 \omega)+$
$42 b^{3} \sin (x+2 \omega)+$
$2 b^{3} \sin (3 x+2 \omega)+$
$12 b^{2} \sin (2(x-\omega))+$
$12 b^{2} \sin (2(x+\omega))+$
$48 b^{2} \sin (2 \omega)+$
$12\left(b^{2}+9\right) b^{4} \sin (2 x)+$
iptic function in the primitives

$$
\begin{aligned}
& \frac{1}{\sqrt{e^{2}-1}} \tanh ^{-1}\left(\frac{(e-1) \tan \left(\frac{v}{2}\right)}{\sqrt{e^{2}-1}}\right) \\
& -\frac{1}{\sqrt{1-e^{2}}} \tan ^{-1}\left(\frac{(e-1) \tan \left(\frac{v}{2}\right)}{\sqrt{1-e^{2}}}\right)
\end{aligned}
$$

phs of the elliptic function
mber of characteristical primitives
or the third body problem
the SRP problem

the Osculating Lagrange Planetary Equations (3)

istants of the integrals
integral is controled by :
step of the elliptic function at the value of π of the true anomaly,
value of zero of the integral at the interval lower bound.
uation of time

$$
t=t_{0}+\frac{2 \tan ^{-1}\left(\sqrt{\frac{1-e}{1+e}} \tan \left(\frac{\nu}{2}\right)\right)-e \sin \left(2 \tan ^{-1}\left(\sqrt{\frac{1-e}{1+e}} \tan \left(\frac{\nu}{2}\right)\right)\right)+\Delta(M)}{n}
$$

1sistency
eduction of the interval bounds of the definite integrals allows to converge to the true ution.

Computation algorithm

alytical step
mpute the integrals and solve the differential system of the Lagrange Planetary Equatior
mpute the equation of time.
imerical step
date each keplerian element, date the position of the third body, turn to the analytical step and so on.

GTO long term

- Analytical Integration of the Osculati

eostationary Transfer Orbit lunar effects

GTO short term
Lunar perturbation

- N
 Numetical Reterence Analyicial Integration of the Osculataing LPE

t (s)

20000
$t(s)$
t (s)

Keplerian I.C. at $\mathrm{t}=22028$ $\mathrm{a}=0.243725807234344 \mathrm{E}+05 \mathrm{~km}, \mathrm{e}=0.728038503096540 \mathrm{E}+00, \mathrm{i}=0.299655550675789 \mathrm{E}+01 \mathrm{deg}$.

Keplerian I.C. at $\mathrm{t}=22028.777627314$ CNES Julian Day in the VEIS 1950 quasi-inertial frame : $\mathrm{a}=0.243725807234344 \mathrm{E}+05 \mathrm{~km}, \mathrm{e}=0.728038503096540 \mathrm{E}+00, \mathrm{i}=0.299655550675789 \mathrm{E}+01 \mathrm{deg}$,
perigec $=0.178399919209522 \mathrm{E}+03$ deg, RAAN $=-12194344117876 \mathrm{E}+03 \mathrm{deg}, \mathrm{M}=17.6053049$

GTO long term

GTO short term
Solar perturbation
Numetical Reference
Analytical Imegration of the Osculaing LPE

t (s)

 perigee and RAAN (rad)
t (s)
Keplerian I.C. at $\mathrm{t}=22028.777627314$ CNES Julian Day in the VEIS 1950 quasi-inertial frame : $\mathrm{a}=0.243725807234344 \mathrm{E}+05 \mathrm{~km}, \mathrm{e}=0.728038503096540 \mathrm{E}+00, \mathrm{i}=0.299655550675789 \mathrm{E}+01 \mathrm{deg}$.
erigee $=0.178399919209522 \mathrm{E}+03 \mathrm{deg}, \mathrm{RAAN}=-121943444117876 \mathrm{E}+03 \mathrm{deg}, \mathrm{M}=17.6053049 \mathrm{deg}: \mathrm{v}=0.981379933 \mathrm{E}+02 \mathrm{deg}$

eostationary Transfer Orbit SRP effects

GTO short term
Solar Radiation Pressure

$$
\text { —— } \quad \begin{aligned}
& \text { Numerical Reffetence } \\
& \text { Analyical Integration of the Osculsting IP }
\end{aligned}
$$

Keplerian I.C. at $\mathrm{t}=22028.777627314$ CNES Julian Day in the VEIS 1950 quasi-inertial frame : $\mathrm{a}=0.243725807234344 \mathrm{E}+05 \mathrm{~km}, \mathrm{e}=0.728038503096540 \mathrm{E}+00, \mathrm{i}=0.299655550675789 \mathrm{E}+01 \mathrm{dcg}$.
perigee $=0.178399919209522 \mathrm{E}+03 \mathrm{deg}, \mathrm{RAAN}=-121943444117876 \mathrm{E}+03 \mathrm{deg}, \mathrm{M}=17.6053049 \mathrm{deg}: \mathrm{v}=0.981379935 \mathrm{E}+02 \mathrm{deg}$

HEO long term

Keplerian I.C. at $\mathrm{t}=23557.86338$ CNES Julian Day in the VEIS 1950 quasi-inertial frame $a=106247.136454 \mathrm{~km}, \mathrm{t}=0.75173 \mathrm{i}=5.2789 \mathrm{deg}$.
perigee $=-179.992 \mathrm{deg}, \mathrm{RAAN}=89.351 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

Keplerian I.C. at $\mathrm{t}=23557.86338$ CNES Julian Day in the VEIS 1950 quasi-inertial fre $\mathrm{a}=105247.136454 \mathrm{~km}, \varepsilon=0.75173 \mathrm{i}=5.2789 \mathrm{dcg}$,
perigee $=-179.992 \mathrm{deg}$, RAAN $=89.351 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

gh Elliptic Orbit solar effects

$$
\frac{1}{}+1 \text { I } 12011
$$

t (s)

HEO short term
Solar perturbation

$$
\begin{aligned}
& \text { - Numetical Reference } \\
& \text { Analytical Integration of the Oscultaing LPE }
\end{aligned}
$$

$\mathrm{t}(\mathrm{s})$

t (s)

0 Setos le+06 1.5 se
Keplerian I.C. at $\mathrm{t}=23557.86338$ CNES Julian Day in the VEIS 1950 quasi-inertial frame $a=106247.136454 \mathrm{~km}, \mathrm{e}=0.75173 \mathrm{i}=5.2789 \mathrm{deg}$.
ecrigee $=-179.992 \mathrm{deg}, \mathrm{RAAN}=89.351 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

HEO long term

Keplerian I.C. at $\mathrm{t}=23557.86338$ CNES Julian Day in the VEIS 1950 quasi-inertial fre $\mathrm{a}=106247.136454 \mathrm{~km}, \mathrm{e}=0.75173 \mathrm{i}=5.2789 \mathrm{deg}$,
perigee $=-179.992 \mathrm{deg}$, RAAN $=89.351 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

gh Elliptic Orbit SRP effects

0 letos $2 e+053 e+05$ 4e+0S $5 e+056 e+057 e+05$
(etos $\quad \mathrm{t}$ (s)

$$
t(s)
$$

HEO short term
Solar Radiation Pressure

```
Numetical Refetence Analywical Integration of the Osculusing LPE
```


Keplerian I.C. at $\mathrm{t}=23557.86338$ CNES Julian Day in the VEIS 1950 quasi-inertial frame $a=106247.136454 \mathrm{~km}, \mathrm{e}=0.75173 \mathrm{i}=5.2789 \mathrm{deg}$.
perigee $=-179.992 \mathrm{deg}, \mathrm{RAAN}=89.351 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg} ; \mathrm{v}=0.0 \mathrm{deg}$

HEO long term Solar Radiation Pressure \qquad Numerical Refetence Analyicical Ineegration

Keplerian I.C. at $\mathrm{t}=23557.86338$ CNES Julian Day in the VEIS 1950 quasi-inertial fri $=106247.136454 \mathrm{t}=0.75173 \mathrm{i}=52789 \mathrm{deg}$,
perigee $=-179.992 \mathrm{deg}$, RAAN $=89.351 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

ean Earth Orbit solar effects

O one period ar perturbation

$$
\begin{aligned}
& \text { - Numetical Reference } \\
& \text { Analytical Integration of the Osculataing LPE }
\end{aligned}
$$

Keplerian I.C. at $\mathrm{t}=17795.0$ CNES Julian Day in the VEIS 1950 quasi-inertial frame : $a=29995.225 \mathrm{~km}, \mathrm{e}=0.00104 \mathrm{i}=56.0 \mathrm{deg}$,
perigee $=0.0 \mathrm{deg}, \mathrm{RAAN}=0.0 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

Keplerian I.C. at $\mathrm{t}=17795.0$ CNES Julian Day in the VEIS 1950 quasi-inertial frame : $a=29995.225 \mathrm{~km}, \mathrm{e}=0.00104 \mathrm{i}=56.0 \mathrm{deg}$,
perigee $=0.0 \mathrm{deg}, \mathrm{RAAN}=0.0 \mathrm{deg}, \mathrm{M}=0.0 \mathrm{deg}: \mathrm{v}=0.0 \mathrm{deg}$

Results (10)

nderstanding
IPLIFIED MODELS OF THE POTENTIALS
CULATING INTEGRATION
ACT INTEGRATION WITHOUT ANY SIMPLIFYING ASSUMPTION LIDITY FOR ALL THE ECCENTRICITIES EXCLUDING THE NULL VALUE THEMATICAL CONSISTENCY OF THE METHOD

FICULTY WITH THE PERIGEE EVEN WHEN THE DIFFERENTIAL SYSTEM IS WELL ITEGRATED
E ACCURACY REDUCES WHEN THE ALTITUDE IS VERY HIGH
T OPTIMIZED COMPUTATION
ypothesis
KING PERIGEE AND MEAN ANOMALY
E REDUCED ACCURACY DUE TO THE SIMPLIFIED MODEL OF THE LUNAR POTENTIAL TTER ACCURACY WITH AN OPTIMIZED COMPUTATION

Conclusion

he Osculating Lagrange Planetary Equations for simplified modelisation
a simple method intellectually efficient to analyse each effect of the Sun and of the Moo ver one orbital period. Moreover, a long duration simulation allows to observe the secula fects on the orbital parameters.
osculating formulas could complement other modelisations.
coupling with the gravitationnal first zonal term J_{2} provides a simple conservative mode reover, the numerical-analytical method allows to built a complete modelisation in Gener erturbations.
o be continued
order 3 of the third body potential is realizable.

