

Improving Safety of Space Operations

Dr. T.S. Kelso

Overview

- Satellite Tracking: Who? How?
- Motivation: Why Do We Care?
 - Background
 - Proposed Solution
 - Validation
- Case Studies
- Space Data Center
 - Demo
- Summary & Conclusions

Satellite Tracking: Who? How?

Satellite Tracking: Who?

- North American Aerospace Defense Command (NORAD)
- US Strategic Command (USSTRATCOM)
 - Joint Forces Component Command-Space (JFCC-Space)
 - Joint Space Operations Center (JSpOC)
- Air Force Space Command (AFSPC)
 - 14th Air Force
 - 614 Air and Space Operations Center (614 AOC)

US Space Surveillance Network

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28 Slide 5

SSA Products

- Orbital Data
 - Two-Line Element Sets (TLEs)
 - General Perturbations Theory (Mean Elements)
 - Requires SGP4/SDP4 propagator
 - Available to the public for most satellites
 - Analyst catalog (~6,000 objects) not available
 - Vector Covariance Messages (VCMs)
 - Special Perturbations Theory (Osculating Elements)
 - Very limited availability due to US policy

TLE Format: Line 1

1 25544U 98067A 11262.42784589 .00012060 00000-0 14491-3 0 935 2 25544 51.6424 46.3642 0010617 212.0972 261.3054 15.61271842735628

- Line number
- NORAD Catalog Number
- Classification (U = Unclassified)
- International Designator (YYNNNAAA)
- Epoch (YYDDD.DDDDDDD)
- First time derivative of mean motion ($n_0/2$)
- Second time derivative of mean motion ($n_0/6$; NNNNN-E = 0.NNNNN×10^E)
- BSTAR (ER⁻¹; NNNNN-E = $0.NNNNN \times 10^{E}$)
- Ephemeris type (1=SGP, 2=SGP4, 3=SDP4, 4=SGP8, 5=SDP8; always 0)
- Element set number
- Modulo-10 checksum

Reference:

T.S. Kelso, "Frequently Asked Questions: Two-Line Element Sets," Satellite Times, January 1998.

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

TLE Format: Line 2

1 25544U 98067A 11262.42784589 .00012060 00000-0 14491-3 0 935 2 25544 51.6424 46.3642 0010617 212.0972 261.3054 15.61271842735628

- Line number
- NORAD Catalog Number
- Inclination (*l*, degrees)
- Right Ascension of the Ascending Node ($m{\Omega}$, degrees)
- Eccentricity (*C*, implied leading decimal)
- Argument of Perigee (*W*, degrees)
- Mean Anomaly (*M*, degrees)
- Mean Motion (*n*, revs per day)
- Revolution number at epoch (revs)
- Modulo-10 checksum

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Slide 8 .S. Kelso, "Frequently Asked Questions: Two-Line Element Sets," Satellite Times, January 1998.

Orbital Propagators

- Simplified General Perturbations (SGP)
 - Based on Kozai Theory (1959)
 - Drag handled via mean motion derivatives
 - Developed 1960, operational 1964
- SGP4/SDP4
 - Based on Brouwer Theory (1959)
 - Drag handled via BSTAR (modified ballistic coefficient)
 - Operational 1970
- Both designed to minimize computational load, storage, and bandwidth

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Orbital Propagators

- Others
 - SGP8/SDP8
 - HANDE
- Must use correct propagator with TLE (SGP4)
 - TLEs contain mean elements
- Must use proper mathematical technique
 - Motivated release of Spacetrack Report Number 3

Reference:

D.A. Vallado, P. Crawford, R. Hujsak, and T.S. Kelso, "Revisiting Spacetrack Report #3," presented at the AIAA/AAS Astrodynamics Specialist Conference, Keystone, CO, 2006 August 21–24.

Reference: F.R. Hoots, P.W. Schumacher, and R. A. Glover. 1995. "History of Analytical Orbit Modeling in the U.S. Space Surveillance System." *Journal of Guidance, Control, and Dynamics*, Vol. 27, No. 2, March-

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Motivation: Why Do We Care?

Motivation

- 61 percent increase in size of known on-orbit population since 2007 Jan 1
 - 2007 Jan 1: 10,136
 - 2011 Sep 20: 16,319
- 83 percent of growth due to two events
 - Chinese ASAT test (2007 Jan 11)
 - 3,180 pieces cataloged to date (only 152 decayed)
 - Iridium 33/Cosmos 2251 collision (2009 Feb 10)
 - 2,035 pieces cataloged to date (only 175 decayed)
- Does not include another 6,000+ 'analyst' objects

\land agi

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Motivation

- ~1,068 operational satellites in Earth orbit
 - Adding roughly 100 satellites each year
 - 87 in 2008; 101 in 2009; 94 in 2010; 62 so far in 2011
- More satellites = more conjunctions
- Implications of a collision are significant
 - Potential loss of satellites & associated revenues
 - Further increase in debris, putting all satellites at risk

Background

- Conjunction analysis needs full-catalog orbital data
- Current SSA limited to non-cooperative tracking
 US SSN uses combination of radar & optical resources
- Maneuvering satellites most difficult to track
 - Maneuvers typically not known to SSN ahead of time
 - Delays in detection can result in poor accuracy or even 'lost' satellites
 - Requires more SSA resources to maintain orbits

Background

- SOCRATES started as proof-of-concept in 2004
 - Show it isn't hard to screen all payloads, using:
 - COTS software & hardware
 - Standard orbital data products
 - Produce timely reports
 - Screens 3,114 payloads vs. 14,722 objects over 7-day window in 79 minutes on a 3 GHz Core 2 Duo with 4 GB RAM
 - Raise awareness of the magnitude of the problem
 - As of 2011 Sep 23, 17,706 occasions where something comes within 5 km of one of 3,114 payloads over a 7-day period
 - Point out limitations of existing orbital data sources

Proposed Solution

- Satellite operators already maintain orbits
 - Active ranging, GPS can be very accurate
- Develop Data Center to collect operator data
 - Use operator data to improve conjunction analysis
 - Provide analysis/data to all contributors
- Requires validation of accuracy assumption

GPS Almanacs vs. TLEs

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28 Slide 18

GLONASS Supplemental TLEs

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28 Slide 19

Sources of Orbital Data

- Many sources of operator orbital data
 - Public sources
 - GPS (almanacs, rapid/final precise ephemerides)
 - GLONASS (rapid/final precise ephemerides)
 - Intelsat (11-parameter data, ephemerides)
 - NOAA, EUMETSAT (state vectors)
 - Direct from satellite operator (Space Data Center)
- Challenges
 - User-defined data formats
 - Variety of coordinate frames & time systems used

Case Studies

Case Studies

- Intelsat: Missed maneuver & cross-tagging
- Astra 1 Cluster
- Astra 1M & 3B: Early orbit
- DIRECTV 10 & 12: Maneuver modeling
- GPS 2F-1 and 2F-2: Missed maneuvers

Intelsat Data Comparisons

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28 Slide 23

ASTRA 1 Cluster

- Open source image of cluster
 - http://www.foton.co.za/assa imaging.htm
- Taken 2009 Jan 21 at 20:21:11 UTC
- Site location: 33.94058 S, 18.51294 E, 10 m
 Pinelands, a suburb of Cape Town, South Africa
- Telescope: 6-inch, f/2.7 reflector
- FOV: 54.7 x 40.2 arcminutes; 20-sec exposure
- Compared SES ephemerides and latest TLEs

ASTRA 1 Cluster

ASTRA 1 Cluster

Astra 1M Early Orbit

- Launched from Baikonur
 - 2008 Nov 5 @ 2044 UTC
- Data Center received first data
 - 2008 Nov 8 @ 1000 UTC
 - Updated every two hours

Astra 1M Early Orbit

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Slide 29

Astra 1M Early Orbit

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28 Slide 30

Astra 3B Early Orbit

- Launched from Europe's Spaceport
 - 2010 May 21 @ 2201 UTC
- Data Center received first data
 - 2010 May 23 @ 0830 UTC
 - Updated every 2-3 hours
- Three phases examined
 - Search: 2010 May 23-June 3
 - Refine: 2010 June 3-16
 - Current: 2010 June 16-28

Astra 3B: Longitude (Search)

al Symposium on Orbit Propagation and Determination, 2017 Slide 32

Astra 3B: Range (Search)

Astra 3B: Longitude with Maneuvers

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Slide 34

Astra 3B: Longitude (Refine)

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Astra 3B: Range (Refine)

Astra 3B: Longitude (Current)

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

Astra 3B: Range (Current)

DIRECTV 10 & 12 TLEs

DIRECTV_10 RIC							
Time (UTCG):	12	วนไ	2010	04:2	5:31.	561	
Radial (km):					0.217	7010	
In-Track (km):				1	8.732	2420	
Cross-Track (km):		÷			3.473	3786	
Range (km):		• *		1	9.053	3027	

DIRECTV_10 ICR Axes Time Step: 10.00 sec

.

DIRECTV 10 & 12 Ephemeris

GPS 2F-1 Missed Maneuvers

Slide 41

GPS 2F-2 Missed Maneuvers

- GPS 2F-2, SVN63, SSC 37753
 - Launched 2011-07-16
 - Conducted 4 orbit-lowering maneuvers
 - 2011-08-14 05:42:08 GPST
 - 2011-08-15 11:58:23 GPST
 - 2011-08-17 00:09:20 GPST
 - 2011-08-18 06:11:58 GPST
 - TLE updates:
 - 2011-08-13 @ 05:49:44 UTC (Day 225.2429)
 - 2011-08-21 @ 23:59:45 UTC (Day 233.9998)
 - TLE over 28,400 km from GPS precise ephemerides at update

TLE Range to GPS 2F-2 PE

Slide 43

Space Data Center

Current Operator Participation

Operator	HQ	Satellites	Operator HQ Sa		Satellites	
Intelsat	Luxembourg	75 GEO	Optus	Australia	5 GEO	
Inmarsat	UK	12 GEO	Indovision	Indonesia	2 GEO	
EchoStar	US	8 GEO	Sky Perfect JSAT Japan		10 GEO	
SES	Luxembourg	47 GEO	Arabsat	Arabsat Egypt		
NOAA	US	5 GEO	Iridium	US	73 LEO	
Star One	Brazil	5 GEO	Orbcomm	US	28 LEO	
Telesat	Canada	22 GEO, 1 LEO	GeoEye	US	2 LEO	
EUMETSAT	Germany	3 GEO	DigitalGlobe	US	3 LEO	
IAI	Israel	2 GEO	Canadian Space Agency	Canada	2 LEO	
Paradigm	UK	7 GEO	GISTDA	Thailand	1 LEO	
Eutelsat	France	23 GEO				
Total: 231 GEO, 110 LEO						

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28

SOCRATES-GEO & LEO Today

- GEO (2011 Sep 21)
 - Includes all objects which pass ±250 km of GEO
 - Screens 225 payloads vs. 1,333 total objects
 - 585 conjunctions within 50 km over 7 days
 - Run time ~9 minutes
- LEO (2011 Sep 21)
 - Includes all objects that pass below 2,500 km altitude
 - Screens 111 payloads vs. 13,057 total objects
 - 2,433 conjunctions within 5 km over 7 days
 - Run time ~11 minutes
- Uses best data sources available

SOCRATES-GEO & LEO Today

- Runs generate standard reports
 - Provides links to standard orbital data
 - CCSDS Orbital Ephemeris Message
 - JSpOC format
- Allows user-defined notification criteria
 - Metrics: Min range, max probability
 - Individual thresholds
- Automatically sends notification via e-mail
- Web access to latest data via secure system

Space Data Association

- Space Data Association established in 2009
 - Dedicated to safe and responsible satellite operations
 - Prevention of collisions in space
 - Improving satellite communications
 - Establishing Space Data Center
 - Automated space situational awareness system
 - Reduce risk of on-orbit collisions
 - Mitigate radio frequency interference
 - Selected AGI to develop and operate: 2010 Apr 12
 - Initial Operational Capability: 2010 Jul 27
 - Fully Operational Capability: 2011 Sep 15

Space Data Center Demo

Online Tutorial @ <u>https://www.spacedatacenter.org/help/</u>

Automatic Notification Message

International Symposium on Orbit Propagation and Determination, 2011 Sep 26-28 Slide 51

			Sear	SDC-LON: Operat	tor Cont	Space Data Center (I SOCRATES-G Search Result act Information - Win	LON) EO dows Internet Exp					
Action	NORAD Catalog Number		Name	Point of Cor E-Mail Telephon	ntact	Operatio 023	ions User Name ns@satellite.com 3-456-7890		Min Range (km) Stop (UTC)			Relative Velocity (km/sec)
Analysis	25239 15144	G	NSS-806 DRIZONT	Last updated: 2010 September 10 19:41 UTC Accessed 4 times					4.452 2010 Sep 17 03:31:26.374		31:26.374	0.754
			NORAD	C Done	Days	Trusted sites	€,1	00% ▼ ,;;	n ge	Relative		
		Action	Catalog Number	Name	Since Epoch	Start (UTC)	(km) TCA (UTC)	(Kir Sto (UT)	r) P C)	Velocity (km/sec)		
		Analysis	25239 15144	NSS-806 [+] GORIZONT 10 [-]	6.834 9.976	6.186E-06 2010 Sep 17 03:29:14.352	2.975 2010 Sep 17 03:30:20.365	4.45 2010 Sep 17 0	52 3:31:26.374	0.754		
		Analysis	25239 15144	NSS-806 [+] GORIZONT 10 [-]	6.335 9.477	2.963E-07 2010 Sep 16 15:31:15.359	13.588 2010 Sep 16 15:32:15.891	20.3 2010 Sep 16 1	41 5:33:16.414	0.755		
						2 records found						

Analysis Window	
-----------------	--

🖉 https://www.spacedatacenter.org/SOCRATES-GEO/data/25239.oem.txt - Wind 🔳 🗖 🗙
CCSDS_OEM_VERS = 1.0 CREATION_DATE = 2010-09-10T12:01:45 ORIGINATOR = SDC-LON
COMMENT Orbit data are consistent with planetary ephemeris DE-421
META_START OBJECT_NAME = 25239 OBJECT_ID = 1998-014A CENTER_NAME = Earth REF_FRAME = EME2000 TIME_SYSTEM = UTC START_TIME = 2010-09-10T07:30:00.000 USEABLE_START_TIME = 2010-09-24T08:15:00.000 STOP_TIME = 2010-09-24T08:15:00.000 INTERPOLATION = Lagrange INTERPOLATION_DEGREE = 5
META_STOP 2010-09-10T07:30:00.000 20404.316497 36900.807770 -29.169127 -2.690881 2010-09-10T07:45:00.000 17940.341554 38158.923008 -27.860992 -2.782653 2010-09-10T08:00:00.000 15399.133488 39252.750919 -26.431987 -2.862449 2010-09-10T08:15:00.000 12791.629832 40177.575344 -24.888301 -2.929924 2010-09-10T08:30:00.000 10129.054376 40929.407280 -23.236622 -2.984786 2010-09-10T08:45:00.000 7422.868912 41505.002153 -21.484110 -3.0268002 2010-09-10T09:00:00.000 4684.723935 41901.873892 -19.638366 -3.0557822 2010-09-10T09:15:00.000 1926.408517 42118.305745 -17.707398 -3.0716071
Done

Future Enhancements (FOC)

- Process new data as received
 - Parallel analysis tool for maneuver planning
- Collection of RFI data for mitigation

Legend :

SDA Member satellites = 225 (11 with TLEs) Non-Member satellites = 176 Debris = 945 (391 dead satellites)

5 (391 dead satellites)

Earth Inertial Axes 9 Sep 2011 13:00:00.000

BUTELSAT W75

i 🔬 agi

Summary & Conclusions

- Bottom line:
 - Technical solution is easy
- Biggest obstacle:
 - Data sharing policies
- Other issues:
 - Organization
 - Resources & Funding
- Together we can work today to mitigate risk

