by **Benoît Carry**¹

¹LESIA. Observatoire de Paris

Typical Disk-Resolved Images

Small Bodies in the Solar System 1

Resolving the apparent disk

- Need better resolution than apparent size : $\Theta < \phi$
- Resolution limited by diffraction or AO-corrected seeing
- $\Theta \sim 0.05''$ for HST in the visible
- $\Theta \sim 0.05''$ for VLT, Keck... in the near-infrared (AO)
- ▶ About 200 available targets

▶ Required brightness

- Asteroids reflect sunlight
- \circ Large $(\phi>0.1'')$ means bright
- No trouble currently

Resolving the apparent disk

- Need better resolution than apparent size : $\Theta < \phi$
- Resolution limited by diffraction or AO-corrected seeing
- $\Theta \sim 0.05''$ for HST in the visible
- $\Theta \sim 0.05''$ for VLT, Keck... in the near-infrared (AO)
- ▶ About 200 available targets

▶ Required brightness

- Asteroids reflect sunlight
- Large $(\phi > 0.1'')$ means bright
- No trouble currently

Small Bodies in the Solar System 2

— And in the future

- ▷ Angular resolution : the next generation
 - JWST (6.5m/V), TMT (30m/NIR), ELT (42m/NIR)
 - $\Theta \sim 0.01''$ for JWST in the visible
 - $\Theta \sim 0.01''$ for TMT, ELT in the NIR
 - $\Theta \sim 0.002''$ for ELT in the visible (AO)
 - ▶ About 2000+ available targets

▶ Required brightness

— And in the future

- ▷ Angular resolution : the next generation
 - JWST (6.5m/V), TMT (30m/NIR), ELT (42m/NIR)
 - $\Theta \sim 0.01''$ for JWST in the visible
 - ullet $\Theta\sim 0.01''$ for TMT, ELT in the NIR
 - $\Theta \sim 0.002''$ for ELT in the visible (AO)
 - ▶ About 2000+ available targets
- ▶ Required brightness
 - Asteroids reflect sunlight
 - Small ($\phi < 0.05''$) means dim
 - Troubles ahead for Centaurs & TNOs especially

Available targets

Typical Disk-Resolved Images

Objet

Conclusions

Not a trivial task → Each group should take care of its data

Shape extraction: principles

- Observing plan
 - Several exposures in few minutes
 - "Lucky imaging" by trashing bad data
- 2. Individual contour extraction
 - Gradient detection algorithm
 - Precision ?
- 3. Creation of average contours
 - "Statistical" approach
 - Remove outliers (= crap)
 - Provide confidence interval
- 4. Contour contains shadow information

Shape extraction: principles

- 1. Observing plan
 - Several exposures in few minutes
 - "Lucky imaging" by trashing bad data
- 2. Individual contour extraction
 - Gradient detection algorithm
 - Precision ?
- 3. Creation of average contours
 - "Statistical" approach
 - ▶ Remove outliers (= crap)
 - Provide confidence interval
- 4. Contour contains shadow information
 - Limb
 - ► Terminator
 - ► High-phase angle interesting

Shape extraction : results

Shape extraction : results

Shape extraction : results

Contour for each epoch with confidence interval

Reachable precision

Reachable precision

Available targets Shape Extraction Reachable precision Albedo Conclusions

Albedo measurements

- ► ∃ albedo variations
 - Visible on many images
 - Few percents
 - Ceres, Pallas, Vesta...
 - Smaller?
- Precision vs artifacts

Solution?

— Albedo measurements

Pallas shape
One concavity leaded by artifact

- ▶ ∃ albedo variations
 - Visible on many images
 - Few percents
 - Ceres, Pallas, Vesta...
 - Smaller?
- Precision vs artifacts
 - Deconvolution
 - Ringing effects
 - May be spurious
- ► Solution?

— Albedo measurements

Ceres in the near-infrared Smooth (remove) artifacts

► ∃ albedo variations

- Visible on many images
- Few percents
- Ceres, Pallas, Vesta...
- Smaller?
- Precision vs artifacts
 - Deconvolution
 - Ringing effects
 - May be spurious
- ► Solution?
 - Combination of # images
 - Mapping = f(shape)
 - Iteration with shape

Conclusions

- Pros of Disk-Resolved Imaging
 - Debiased, direct measure of apparent size and shape
 - Very precise : few percent on radius
- Cons of Disk-Resolved Imaging
 - ► Data "hard" to obtain
 - Limitation on targets (size & time)
- Output for shape reconstruction
 - x,y & δr
 - ightharpoonup Albedo ightharpoonup L. Jorda's talk
- Available targets
 - ▶ ~200 with VLT, HST
 - ▶ ~2000 with JWST, TMT, ELT
 - ► NEAs, Centaurs and TNOs