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• Case study of complementary data modes: generalized projections

• Major mode: volumes of projections

• Minor mode: boundary curves of projections

• Solution: shape and spin state

• Astrophysical data: photometry and adaptive optics (AO)

• AO processing an inverse problem itself

• Brightness distribution I(u), u ∈ R2 from AO deconvolution unreliable and prone to large
contrast errors

• Boundary ∂D, D = {u : I(u) > ε} much more accurate

• With ∂D, no modelling of the scattering properties of the surface required (and solution
from volume data insensitive to scattering)
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LC + AO: consistency
AO images and LC models
are both solutions of
inverse problems

AO images agree well
with independent LC-
based models, so...

...we can expect a joint
model to fit data from
both sources well (not
necessarily always the
case, esp. with LCs+
delay-Doppler radar)



Multidatainversion

Minimize a joint 2 such
that separate AO and
LC 2s are acceptable

e.g.: (9) Metis with a
strong smoothness
constraint to suppress
too many artificial
details

But one AO image
suggests a large
crater/spot: let’s just
add it and see what
happens...



Is it there...

The AO spot can be
reproduced with a
suitable crater (left)...

...but then it should
also be seen in other
images (right)!

AO post-processing
tends to produce
exaggerated contrasts
and spurious “features”



...or not?

No spot seen in original
basic-processed AO
images -- better to err
on the safe side

Post-processing (from
basic image and
estimated PSF) is
always nonunique: it
uses selected a priori
constraints not
necessarily mutually
consistent with the full
shape/spin model



The art of a priori info

In principle, the 3-D model should enter
already at the post-processing stage: we
could invert basic AO+PSF+LC data

But post-processing seems to produce very
good/sharp edges (silhouette), so we should
invert post-proc edges+LC data...

...work in progress: how to get maximal
reliable info and separate true details from
artificial ones, and how to keep “only” those
details in the model



1 Profiles, TCBs, uniqueness

• Volumes of projections: unique solution for convex bodies C

• Profiles (silhouettes): unique for tangent-covered bodies T

• Generalized profiles (shadows included): unique for a larger class G

C ⊂ T ⊂ G.

Profile of B in direction ω ∈ S2:

P∂(ω,B) = ∂P(ω,B)

Cylinder continuation of a set of points S in direction ω:

C(ω,S) =
{
x + sω

∣∣∣x ∈ S;−∞ < s <∞
}
. (1)

Profile hull is formed by several profiles:

H({P∂(ωi)|Ni=1}) = ∂
⋂
i

C(ωi,Si), Si =
{
xκ(ωi)

∣∣∣κ ∈ P(ωi)
}
. (2)

Condition for correct profile offsets: the profiles of the constructed H must be identical to
the observed ones.

P∂[ωi,H({P∂(ωj)|Nj=1})] = P∂(ωi)
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Tangent-covered bodies (TCBs) are bodies that are their own complete profile hulls: B =

HC(B). Thus, each surface point x ∈ B of a TCB is mapped at least to one P∂(ω).

Generalized profiles: illumination and viewing directions (ω0, ω) ∈ S2×S2 define the region

A+(ω, ω0;B) = A+(ω;B) ∩ A+(ω0;B), (3)

where
A+(ω;B) =

{
x ∈ B

∣∣∣〈ν(x), ω〉 ≥ 0; ∀s > 0 : x + sω /∈ B
}
, (4)

where ν(x) is the unit surface normal at x. The projection P of the boundary ∂A+ is now the
generalized profile:

The generalized profile of the body B in the direction ω and at illumination direction ω0 is

∂P [ω,A+(ω, ω0;B)] = P [ω, ∂A+(ω, ω0;B)]. (5)

Uniqueness theorems for reconstructions from generalized profiles can be shown for various
configurations; e.g., shadow contours of a known partK of B on an unknown part U , or shadow
contours of U on K.
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2 Combined data modes

Full χ2:
χ2

tot = χ2
L + λ∂χ

2
∂ + λRg(P ), (6)

Volume of generalized projection:

L(ω0, ω) =

∫ ∫
A+

R(x;ω0, ω)〈ω, ν(x)〉 dσ(x) ≡
∫ ∫

P(ω,A+)

R[P−1(ω,A+,κ);ω0, ω]d2κ,

(7)
(R surface scattering model, P−1 backprojection R2 → R3) and its χ2:

χ2
L =

∑
i

[L(obs)(ω0i, ωi)− L(mod)(ω0i, ωi)]
2 (8)

For starlike profiles:
χ2
∂ =

∑
ij

[r(obs)
max (αij)− r(mod)

max (αij)]
2. (9)

In general:
χ2
∂ =

∑
ij

inf
s

{
‖∂Oi(s)− κij‖2

}
, (10)

κij observed profile points, ∂O modelled profile.
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Regularization by, e.g., smoothness:

simple one for low regularization weight:

gS =

∫
B
[r − 〈r〉]2 dσ, (11)

For higher weights, suppress local concavities:

C =
1∑
iAi

∑
ij

Aij(1− 〈νi, νij〉), (12)

where Ai denotes the area of the facet i, and Aij the areas of those facets around it that are
tilted above its plane.

Physical constraint: principal axis rotation

gI = (1− cos2 τ )2 = [1− I3(B)2]2, (13)

where τ is the angle between the z-axis of the model and the eigenvector I ∈ R3 (normalized
〈I, I〉 = 1) corresponding to the largest eigenvalue of the inertia matrix I of the model shape B.

Also, we can augment (10) by

λ
∑
i

1

Ci

∮
∂Oi

inf
κ∈{κij}

{
‖∂Oi(s)− κ‖2

}
ds, (14)

where Ci =
∮
∂Oi

ds. This suppresses irregularity on surface parts not projected near the ob-
served profile points.
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3 Maximum compatibility estimate

P parameters, Di data sources

χ2
tot(P,D) = χ2

1(P,D1) +

n∑
i=2

λi−1χ
2
i (P,Di) D = {Di, i = 1, . . . , n} (15)

with nondegenerate solutions for ech data mode:

arg minχ2
i (P ) 6= arg minχ2

j(P ), i 6= j

Consider first two data sources:

x(λ) := {χ2
1|minχ2

tot;λ}, (16)
y(λ) := {χ2

2|minχ2
tot;λ}.

The curve
S(λ) := [log x(λ), log y(λ)] (17)

is a part of the boundary ∂R of the region R ∈ R2 formed by the mapping χ : Rp → R2 from
the parameter space P into χ2

i -space:

χ = {P→ (logχ2
1, logχ2

2)}, R = χ(P)

Translate the origin:

x̂0 = log x(λ)|λ=0 = log minχ2
1 (18)

ŷ0 = log y(λ)|λ→∞ = log minχ2
2.
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Now we have the optimal point on ∂R:

P0 = arg min
(
[logχ2

1(P )− x̂0]
2 + [logχ2

2(P )− ŷ0]
2
)
, (19)

so we have, with λ as argument,

λ0 = arg min
(
[log x(λ)− x̂0]

2 + [log y(λ)− ŷ0]
2
)
. (20)

We call the point P0 the maximum compatibility estimate (MCE), and λ0 the maximum com-
patibility weight (MCW). MCE can be determined without MCW (or λ).

This approach straightforwardly generalizes to n χ2-functions and n − 1 parameters λi de-
scribing the position on the n − 1-dimensional boundary surface ∂R of an n-dimensional
domainR: the MCE is

P0 = arg min

n∑
i=1

[
log

χ2
i (P )

χ2
i0

]2
, χ2

i0 := minχ2
i (P ), (21)

and the MCW is

λ ∈ Rn−1 : λ0 = arg min

n∑
i=1

[
log

χ̂2
i,tot(λ)

χ2
i0

]2
, χ̂2

i,tot(λ) :=
{
χ2
i

∣∣∣minχ2
tot;λ

}
. (22)

Another scale invariant version of MCE can be constructed by plotting χ2
i in units of χ2

i/χ
2
i0

and shifting the new origin to χ2
i/χ

2
i0 = 1:

P0 = arg min

n∑
i=1

[χ2
i (P )

χ2
i0

− 1
]2
, λ0 = arg min

n∑
i=1

[χ̂2
i,tot(λ)

χ2
i0

− 1
]2
. (23)

This, however, is exactly the first-order approximation of (21) and (22)
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Figure 1: S curve plotted for 2 Pallas with various weights λ (LC for lightcurves, AO for adaptive optics profiles).

Starlike shapes:

r(θ, ϕ) = exp
[∑

lm

clmY
m
l (θ, ϕ)

]
, (θ, ϕ) ∈ S2 (24)

Other shape types by suitable parametrization/mesh.
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Figure 2: Sample observed (solid lines) vs. modelled (dashed lines) AO contours for 2 Pallas. Coordinates are in pixel units.

Figure 3: Sample observed (solid lines) vs. modelled (dashed lines) AO contours for 41 Daphne. Coordinates are in pixel units.
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