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modes in inverse problems:
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estimate
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e Case study of complementary data modes: generalized projections
e Major mode: volumes of projections

e Minor mode: boundary curves of projections

e Solution: shape and spin state

e Astrophysical data: photometry and adaptive optics (AO)

e AO processing an inverse problem itself

e Brightness distribution /(u), u € R? from AO deconvolution unreliable and prone to large
contrast errors

e Boundary 9D, D = {u : I(u) > ¢} much more accurate

e With 0D, no modelling of the scattering properties of the surface required (and solution
from volume data insensitive to scattering)



AO ﬂ]J&?J.. Keck Observation of (130) Elektra

S @.

with independent LC-
based models, so... 2003-Dec-07 07:16:55 UT

L .
...WE Cadl EXPECt"a ]Olnt Keck Observation of (511) Davida
model to fit data from -

both sources well (not
necessarily always the
case, esp. with LCs+
delay-Doppler radar)

2002-Dec-27 11:05 UT
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+ Minimize a‘jointy2stch
that separate AO and
LC «?s are acceptable™
e.g.: (9) Metis witha
strong-smoothness
constraint to suppress
too many artificial

details

But one AO image
suggests a large
crater/spot: let’s just
add it and see what
happens...
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+ The AO spot canibe

...but then it should =
also be seen in other
Images (right)!

AO post-processing
tends to produce
exaggerated contrasts
and spurious “‘features”




+ No spot seen’in origina:
nasic-processed A0
images -- better to err
on the safe side -
Post-processing (from
basic image and
estimated PSE) is
always nonunique: it

uses selected a priori
constraints not
necessarily mutually
consistent with the full
shape/spin model
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* In principlesithe’s:D enter
already at the pcﬁiproeessin age:

could invert basic AO+PSF+LC data

¢ But post-processing seems to produce very.
good/sharp edges (silhouette), so. we should
Invert post-proc edges+LC data...

+ _..work In progress: how to get maximal
reliable info and separate true details from
artificial ones, and how to keep “only” those
details in the model




1 Profiles, TCBs, uniqueness

e Volumes of projections: unique solution for convex bodies C
e Profiles (silhouettes): unique for tangent-covered bodies 7

e Generalized profiles (shadows included): unique for a larger class G

CcTcCg.

Profile of B in direction w € S
Py(w, B) = 0P (w, B)
Cylinder continuation of a set of points S in direction w:
C(w,S):{x+sw|x€8;—oo<s<oo}. (1)
Profile hull is formed by several profiles:

H({Pao(w;) =0 ﬂ C(w;, S {x%(wz)

%€ P(wl)} )

Condition for correct profile offsets: the profiles of the constructed H must be identical to
the observed ones.

Polwi, H({Po(w;)[j=1})] = Palw;)



Tangent-covered bodies (TCBs) are bodies that are their own complete profile hulls: B =
Hc(B). Thus, each surface point = € B of a TCB is mapped at least to one Py(w).

Generalized profiles: illumination and viewing directions (wy, w) € S* x S? define the region

A (w,wo; B) = Ay (w; B) N AL (wo; B), 3)
where
A+(w;B):{xEB|<V(a;),w> zo;v3>0:x+sw¢5’}, )
where v(x) is the unit surface normal at z. The projection P of the boundary 0.4, is now the
generalized profile:

The generalized profile of the body B in the direction w and at illumination direction wy is
ap[waA+(w7w0;B)] - P[W,@A+(W,WO;B)]. (5)

Uniqueness theorems for reconstructions from generalized profiles can be shown for various
configurations; e.g., shadow contours of a known part /C of 5 on an unknown part {4, or shadow
contours of U on K.



2 Combined data modes

Full y*:
X2 = X3+ Aaxd + Arg(P), (6)

Volume of generalized projection:

L(wy, w // (x; wy, w){w, v(x)) do(x // Yw, Ay, 50); wy, w|d? s,
A+ .A+

(7)
(R surface scattering model, P~! backprojection R? — R?%) and its

X = D L (woi, wi) — L&Y (wpy, wi)) (8)

For starlike profiles:
X5 = D[ ag) = ris () 9)

ij
In general:

G =D inf { 90i(s) = 5412}, (10)

ij
»;; observed profile points, 9O modelled profile.



Regularization by, e.g., smoothness:

simple one for low regularization weight:
gs = /[7“— (r))? do, (11)
B
For higher weights, suppress local concavities:

ZAU (i, vij)), (12)

ZA

where A; denotes the area of the facet ¢, and A;; the areas of those facets around it that are
tilted above its plane.

Physical constraint: principal axis rotation
gr = (1 —cos’7)* = [1 — I3(B)*)?, (13)
where 7 is the angle between the z-axis of the model and the eigenvector / € R? (normalized
(I,I) = 1) corresponding to the largest eigenvalue of the inertia matrix | of the model shape B.
Also, we can augment (10) by

A Z jl{ inf |8(’)i(s) — %H2} ds, (14)

00; we{x;}

where C; = fao- ds. This suppresses irregularity on surface parts not projected near the ob-
served profile points.



3 Maximum compatibility estimate

P parameters, D, data sources

Xtor(P, D) = X1(P,D1) + Y Xax((P.D;) D={D;i=1,...,n} (15)
i=2
with nondegenerate solutions for ech data mode:
argmin x;(P) # argmin x;(P), i #j
Consider first two data sources:
r(A) = {xi| min g A} (16)
y(A) = X3 min xie; A}

The curve
S(A) = [log z(A), log y ()] (17)
is a part of the boundary OR of the region R € R? formed by the mapping y : R”? — R? from
the parameter space IP into ?-space:

x ={P — (log x7,log x3)}, R =x(P)
Translate the origin:

7y = loga(A\)|a=o = log min x (18)
o = 10gy(N)]r-00 = log min 3.



Now we have the optimal point on OR:

Py = argmin ([log x3(P) — a0 + log x3(P) — g0 ). (19)
so we have, with )\ as argument,
Mg = arg min ([log z(N) — 2o]* + [logy(N) — g)o]2>. (20)

We call the point F the maximum compatibility estimate (MCE), and \, the maximum com-
patibility weight (MCW). MCE can be determined without MCW (or \).

This approach straightforwardly generalizes to n y?-functions and n — 1 parameters )\; de-
scribing the position on the n — 1-dimensional boundary surface OR of an n-dimensional
domain R: the MCE is

P
Py = argmmz [log XZ( )

9
} , X?o = minxf(P), (21)
1=1 XZO

and the MCW 1s

2
AeR"H: Ao = arg mmz [ Xl tOt ] ; X?,tot(A) = {Xzz

minxtiAp (22)

Another scale invariant version of MCE can be constructed by plotting Xz in units of x; / Xzo
and shifting the new origin to x; 2/ Xz()

(P) 72 ~ NioA) 72
PO:argminZ [ng )—1} M= argmin Y [X ot )—1] . (23)
— - Xio Xi0
1=1

1=1

This, however, is exactly the first-order approximation of (21) and (22)



Figure 1: S curve plotted for 2 Pallas with various weights A (LC for lightcurves, AO for adaptive optics profiles).

Starlike shapes:
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Other shape types by suitable parametrization/mesh.
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Figure 2: Sample observed (solid lines) vs. modelled (dashed lines) AO contours for 2 Pallas.
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Figure 3:

Sample observed (solid lines) vs.
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Coordinates are in pixel units.
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