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To date many results have been obtained about equilibrium forms of
homogeneous liquid:

the Maclaurin spheroid (1742);

the Jacobi ellipsoid (1834);

Poincaré and Liapounov obtained infinitely close to the above
mentioned ellipsoid using Lamé’s functions.

The problem of determining equilibrium forms of inhomogeneous bodies
is mach more difficult and has been studied less.

Clairaut (1743)

Hamy (1887)

Veronnet (1919)

Pizzetty (1913)

Montalvo D. Martinez F. J. Cisneros J. ( On equilibrium figures for
ideal fluids in the form of confocal spheroids rotating with common
and different angular velocities, 1982)

Chaplygin (1948)
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In our work we have obtained the joint solution of the hydrodynamic
Euler equation, equation of continuity and the Poisson equation for
gravity potential. The solution which we have obtained corresponds to
the gomofocal spheroid, in which the angular velocity and density in each
layer take on a constant value.
The spheroid surface is governed by the equation:

x2 + y2

a2
+

z2

b2
= 1,

where a > b. The Euler equation that defines the motion of liquid is

∂V

∂t
+ (V∇)V = ∇U −

1

ρ
∇p, (1)

The equation of continuity has the form:

∂ρ

∂t
+ div (ρV) = 0. (2)

The potential U satisfies the Poisson equation.

∆U = −4πGρ. (3)
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We will consider the system of equations in the curvilinear system
(r , ϕ, µ):

x = r cos(ϕ), y = r sin(ϕ), z =

(

b2 + µ −
b2 + µ

a2 + µ
r2

)

1
2

, (4)

a ≤ r ≤ 0, 2π ≤ ϕ ≤ 0, µ0 ≤ µ < −b2. (5)

We consider the spheroid for which the field of velocities inside the
spheroid has the form: ω = ω(µ), that is each layer which has the fixed
value µ rotates with its constant angular velocity.
In this case the Euler equations take the following form in our system of
coordinates:

− ω(µ)2r =
∂U

∂r
−

1

ρ(µ)

∂p

∂r
+

2(a2 + µ)(b2 + µ)r

(a2 + µ)2 − r2(a2 − b2)

(

∂U

∂µ
−

1

ρ(µ)

∂p

∂µ

)

(6)

0 =
1

r2

(

∂U

∂ϕ
−

∂p

∂ϕ

)

(7)

− ω(µ)2r2 = r

(

∂U

∂r
−

1

ρ(µ)

)

+ 2(a2 + µ)

(

∂U

∂µ
−

1

ρ(µ)

∂p

∂µ

)

. (8)
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The gravity potential is determined by the Poisson equation which has
the following form in our system of coordinates:

1

r

∂U

∂r
+

∂2U

∂r2
+

1

r2

∂2U

∂ϕ
+

2(a2 + µ)

(a2 + µ)2 − r2(a2 − b2)

(

(a2+2b2+3µ)
∂U

∂µ
+

+ 2(b2 + µ)

(

r
∂2U

∂µ∂r
+ (a2 + µ)

∂2U

∂2µ

)

)

= −4πGρ. (9)

Equations (6)-(9) have the solution ω(µ) if and only if the gravity
potential inside the spheroid has the following form:

U = r2fi (µ) + gi (µ). (10)

Considering (10), we find:

ω(µ)2 = −
ρ(µ0)

ρ(µ)r

(

∂U

∂r

)

µ=µ0

+
1

ρ(µ)r

∫

µ0

µ

ρ′(µ)
∂U

∂r
dµ, (11)

p = p0 − ρ(µ0)Uµ=µ0 + ρ(µ)U +

∫

µ0

µ

ρ′(µ)U dµ, (12)
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Substituting the potential (10) in the Poisson equation and equating the
coefficients with degrees r , we obtain a system of differential equations
for the determination of f (µ) and g(µ) inside the spheroid

f ′′

i (µ) +
(a2 + 6b2 + 7µ)

2(a2 + µ)(b2 + µ)
f ′i (µ) −

(a2 − b2)

(a2 + µ)2(b2 + µ)
fi (µ) =

=
πGρ(µ)(a2 − b2)

(a2 + µ)2(b2 + µ)
, (13)

g ′′

i (µ) +
(a2 + 2b2 + 3µ)

2(a2 + µ)(b2 + µ)
g ′

i (µ) = −
πGρ(µ) + fi(µ)

(b2 + µ)
. (14)

and outside the spheroid (ρ(µ) = 0).
The solution that we have obtained satisfies the well-known solution for
the Maclaurin spheroid and our solution includes the solution for two
layers each of which has a constant density.
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We have considered the spheroid with continuous inhomogeneous density:

ρ(µ, λ) =
ρ(−2µ4 − 5b2µ3 − 3b4µ2 + 2λ2(2λ + 3b2)(λ + b2))

λ2(3b4 + 5λb2 + 2λ2)
, (15)

where b characterizes the size of the core and λ is the parameter of the
shell.
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Fig. 1: The density function (15)

(b = 2, λ = 40)
Fig. 2: The function
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