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1. The Dirichlet equations

The equations of the dynamics of a homogeneous, incompressible, ideal fluid of unit density
in a Lagrangian form are in the case of potential forces applied to the fluid as follows:

.
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where @ = (a4, ay,a3) are the initial positions of the material points of the medium (the
so-called Lagrangian coordinates),
(a t) are the coordinates of the points of the medium at the time ¢ (i.e., x(a,0) = a),
U(a,t) is the density of the potential energy of the external forces, p(a,t) is the pressure,
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‘ is the matrix of the partial derivatives.

These equatlons must be supplemented with the incompressibility condition, which can be

written is the case at hand as a
X
det (—) =1. (2)
oa

Thus, we obtain a system of partial differential equations in which four quantities, viz., x1, X3, x3, and p, are unknown
as the functions of the variables a and t. To determine them, except initial conditions (x(a, 0) = a, x(a, 0) = vo(a)),
also boundary conditions must be specified; in our case, the latter reduce to the statement that the pressure has the

same value independent of a everywhere on the free surface.

Dirichlet noted that, if the potential of the external forces U(a,t) is a homogeneous
quadratic function of the Lagrangian coordinates, i.e.

U(a,t) = Uo(t) + (a, V(t)a), (©)



where Up(t) is independent of a and V(t) is a symmetric matrix, then the equations of
motion (1), (2) admit a partial solution

x(a,t) =F(t)a, detF(t)=1. (4)

Here, F(t) is a 3 x 3 matrix.
In this case, the boundary conditions will be satisfied provided that the fluid has initially an
ellipsoidal shape,

(a,A;%a) <1, (5)

where Ag = diag(AO,Ag,Ag) is the matrix of the initial semiaxes and the pressure has the
form

p(a,t) = po(t) + o(t)(1 - (a, Ay *a)). (6)

We substitute (3), (4), and (6) into (1) and (2) to obtain equations for the matrix F(¢) and
the function o(t) in the form

FTF= -2V - 20A;2,

(the Dirichlet equations) (7)
detF = 1.

As Dirichlet showed, the system of ten equations (7) for ten unknown functions Fj;(t), o(t),
i,j=1,2,3, is compatible.

Obviously, the transformation (4) changes the original ellipsoid (5) into the ellipsoid specified by the quadratic form

(x, (FAJF) ") < 1. ®)



1.1. Gravitational potential

Now, we determine the right-hand sides of equations (7) We use the known representation
of the gravitational potential for the interior of the ellipsoid in the system of the principal
axes

U(C):—§mc Tan DY ¢ A =JJ@7+x (9)
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where G is the gravitational constant and m = %T{'pA1A2A3 is the mass of the ellipsoid.
It is now necessary to represent (9) in terms of the elements of the transformation matrix

F and in the Lagrangian coordinates a.

A%(\) = det(A% 4 AE) = det(FA2F" + AE),

Cz 2 1 Tea2ET 1 (10)
A° + )\E)™ a,F' (FAGF' + A\E)” 'Fa).
Y arin s GO BT = (@ FIEAET 8 Fa)
Thus, we find the following representation for the matrix V in the Dirichlet equations:
T 3
/ F'(FAZFT + XE)™'F, e¢= Zmc;; (11)

2 det(FAzFT + AE)

it can be shown by direct calculations (see [2]) that V depends on the elements of the
matrix F only through symmetric combinations of the form ®;; = >, FixFj, which are the
dot products of columns of the matrix F.



1.2. The Roche Problem

By the Roche problem, according to Jeans’s terminology [4] (see also [11, 1]) we mean the problem of the interaction
of a deformable body (satellite) and a spherical rigid body which move along circular Keplerian orbits. Actually, in [19]
Roche considered the motion of the liquid mass under the action of a gravitating center (the notion of Roche zones traces
back to this work). More general problem, where the second body does not have a spherical symmetry (i.e. the motion
of two arbitrary bodies with mass centers moving along circular orbits), is called the Darwin problem [11].

Let a self-gravitating fluid mass move in the field of a spherically symmetric rigid body and both of these bodies rotate
about their common center of mass in circular orbits. We choose a (moving) coordinate system Ox1xyx3 with its origin
at the center of mass of the ellipsoid and direct the Oxy axis toward the common center and the Ox3 axis normally to

the plane of rotation (see Fig. 1).

Fig. 1:



The equations of motion of incompressible fluid can be written in this case in the following Lagrangian form

ax\T . . 5} 1, 5 2 P
(—) (X +2we3z X X) = —— <p+U+Usf—w (xf +x3) +w —Rx1) s (12)
da da 2 me + ms

det (2 (13)
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where, as before, a are the Lagrangian coordinates of fluid elements, x(a,t) are their positions at the given time,
p(a,t) is the pressure, R is the distance between the centers of mass of the bodies, me and ms are the masses of the
ellipsoid and the sphere, respectively, w is the angular velocity of rotation of the system about their common center of
mass, and U is the gravitational potential (9). The gravitational potential of a spherical body Us has the form

msG msG x 11
e (1+—1+——2(21f—x§71§)+...>,
(x17R)2+x%+x§ R R 2R

where G is the gravitational constant.
We omit higher-order terms in % and use the well-known relationship for a circular Keplerian orbit R3w? = G(me+ms)
to obtain finally (after collecting like terms) the equation

(8X>T("+2 X) 9 ( +U ! 2(x,B )) dt(ax> 1 (14)
— X wez X X) = —— — —w(x,Bx) |, det [ — ) =1,
9a 3 oa \" 2 da



where B = diag 3mstme _me  _ _ms_\ | the limiting case of a motionless Newtonian center ( Z& — 0),
me+ms ° me+ms ’ me+ms ms

we have B = diag(3, 0, —1).
By substituting (4) into (6), we obtain the equations of motion in Roche’s problem in the form
FT(F + 20F) = —2V + 20A; 2 + w?F'BF,
detF =1, (15)

where = || — weji || is the matrix of the rotational velocity.

REMARK 1.  Equations (14) are given in the book by Chandrasekhar, who uses them only to find hydrostatically
equilibrated configurations of fluid masses and analyze their stability. Chandrasekhar does not present the dynamical

equations (15).



2. First integrals

Let us return to the Dirichlet—Riemann problem on dynamics of the self-gravitating ellipsoid.
The first integrals of the equations, linear in the velocities, can be obtained from the
conservation laws for vorticity and angular momentum (the law of areas).

2.1. Vorticity
We write the law of conservation of vorticity for the hydrodynamic equations in the
Lagrangian form (1), thus obtaining

Z(%%_%%) = &y = const, (16)
8Gk 80/ (90/ 8Gk

i

with the condition & = —&j satisfied. We denote this antisymmetric matrix as ™ = [|&x/||
and find for the Dirichlet equations (7) that
= =FF—F'F = const. a7

As already mentioned, the conservation of vorticity in this problem was noted by Dirichlet even before the appearance

of a classical study by Helmholtz in which this law was extended to ideal hydrodynamics on the whole.

2.2. Momentum
The angular momentum relative to the center of the ellipsoid can be represented as

M = /(xixj — xji;)d’x = 5 Z(Fiijk — FiFi)(AD)?. (18)
k

In a matrix form, with the unimportant multiplier omitted, we have
M’ = FAZF" — FAZFT = const, (19)
where M’ = || 2 M]|.
m



2.3. Energy

In addition to the linear integrals, the equations of motion also admit another, quadratic
integral, viz., the total energy of the system. The integration of the kinetic and the potential
energy of the fluid particles over the volume of the ellipsoid yields

&= %(Te + Ue),

1 = A2rT
Te = - Tr(FAZF
e=5 t(FAGF') (20)
A
Ue = a
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3. Lagrangian and Hamiltonian Formalism

It is known (see, e.g., [6]) that the motion of ideal fluid satisfies the Hamilton principle;
therefore, Dirichlet’s solution also satisfies this principle. This makes it possible to represent
the equations of motion in a Lagrangian and, next, in a Hamiltonian form. The Hamiltonian
principle for the considered problem was used for the first time by Lipschitz [8] and
Padova [7].
As the Lagrangian function, it is necessary to choose the difference between the kinetic
and potential energies of the fluid in the ellipsoid; within the unimportant multiplier, we
have

L=Te— Ue7 (21)

where T and U. were defined above in (20). The elements of the matrix F appear as
generalized coordinates. We write the Lagrange—Euler equations taking into account the
constraint det F = 1 to obtain

oL oL 8
(—.) e 22)
OF oF 6F
where ¢ = detF, and use the following matrix notation for any function: % = H oF;

= = H H K being the undefined Lagrangian multiplier. The differentiation in view of

.
the formula (—“’) = oF ! yields

OF
FAZ = 2: — /
oF ,/det(FAZFT + AE)

We can easily make sure that these equations coincide with the Dirichlet equations (7) if

k(F~"7 detF. (23)

we set kK = 20.



The matrix of the initial semiaxes Ag appears in the Lagrangian function and the equations
of motion of the system as a set of parameters. Obviously, these parameters can be
transferred to the initial conditions; indeed, upon the substitution G = FA( (suggested by
Dedekind [5]), the Lagrangian function and the equation of constraint can be written as

1
L_

= S TH6ET) + 26 /
0

det(GG™ + XE) (24
@ = detG = det Ay = const.

The initial conditions have obviously the form G|;—op = Ap, and the equation of motion
i oL\ _ oL _ 4 9¢

preserves its form, (676) 56 = Ha6-

It can also be shown that the substitution

1/3
G — (detAg)'/3G, t— Mr
2e
reduces the system (24) to the case of ¢ = 1/2,p = 1. Thus, the dynamics of the self-
gravitating fluid ellipsoid is described by a natural Lagrangian system without parameters
on the SL(3) group.
The first integrals — vorticity, momentum (19), and energy (20) — can be represented in
the form
==6'6-6'6, M=GG’ — GG’,
i 25
5:1Tr(GGT)—25/#. )
2 S \/det(GGT + AE)



3.1. The Riemann Equations

Let us show how the equations of motion can be written in a Riemannian form. To this end,
we pass to the moving system of the principal axes of the ellipsoid. It is known that such
a transformation is given by the orthogonal matrix

¢=Qx, Q" =@ (26)
In the new coordinates ¢, the ellipsoid is specified by the relationship
(¢, A720) <1, @1

where A = diag(A1,A3,A3) is the matrix of the principal semiaxes at the given time.
We also note that, since the transform (4) is linear, the fluid particles constantly move over
ellipsoids for which

(¢, A"%¢) = (a,A;%a) =n® = const, 0<n? <1 (28)

(In particular, the fluid particles that were initially at the boundary remain at the boundary
at any time). Therefore, the modulus of the vector A—'¢ does not vary, so that the vectors
A~"¢ and A0_1a are also related by the orthogonal transformation

A"¢t=0A;"'a, ©"=0"". (29)
Thus, we obtain the following decomposition of the matrix F:
T —1
F=Q AGA0 . (30)
REMARK 2. Multiplying by a constant matrix Ag yields a decomposition of the form
FA, = Q'AG 31

known in linear algebra as a singular decomposition [15].



We introduce the angular velocities corresponding to the orthogonal transformations,
w=0Q", w=00", (32)
which are known to be antisymmetric matrices [18].

3.2. From here on, the components w; and w; are related to the elements of the antisymmetric
matrices (32) according to the regular rule

Wij = EjkWk, Wjj = EjjkWk- (33)

3.3. Thus the decomposition (30) represents the equations of motion on the configuration
space R? ® SO(3) ® SO(3) (the direct product of the Abel group of translations and two
copies of the group of rotations of three-dimensional space), with the elements of the
matrices w and w corresponding to the velocity components with respect to the basis
of left-invariant vector fields. The equations of motion assume the form of the Poincaré
equations on the Lie group [18]; in view of the fact that the Lagrangian function (24)
is independent of the elements of the matrices Q@ and © and with due account for the
constraint ¢ = A1A2A3 = const, we obtain the following representation of the Riemann

equations:
(B_L) oL, 0%
OA; OA; 0A;’

(aw,) ZE’/“ Wi (aw,) Za’fk

where < is the Lagrangian undetermined multiplier (which coincides with o within a

(34)

multiplier) and ;i is the Levi-Civita antisymmetric tensor.



3.4. The Riemann equations can be written in the following matrix form:

V—Wv+vw=—2VA + 20A~",
v=A—wA+ Aw, (the Riemann equations) (35)
A1AA3 =1,

3.5. Where V = diag(fﬁ7 v, \73), and

V= . AT .
’ AN+AZA(N) | A0A Sy B

_/ 1 dA 10 dA (361
0

3.6. Symmetry Group and the Dedekind Reciprocity Law

The Lagrangian representation of the Dirichlet equations (22) offers a very simple way to
finding the symmetry group of the system. Indeed, it can be shown that the Lagrangian
with the constraint [see (24)] and, therefore, the equations of motion are invariant with
respect to transformations of the form

G' =$:GS;, Si,S; € SO(3). 37

Thus, the system is invariant with respect to the group I' = SO(3) ® SO(3).

Clearly, the Noether integrals corresponding to the transformations (37) are the integrals
of vorticity and total momentum (25). Accordingly, as will be shown below, the Riemann
equations describe a system reduced based on the given symmetry group.

Furthermore, it can easily be shown using (24) that the equations of motion are invariant
with respect to the discrete transformation of transposition of matrices:

G =6".



Therefore, we have
Theorem 1 (The Dedekind reciprocity law). Any solution, G(t), of the Dirichlet equations
can be placed in correspondence with the solution G'(t) = G (t) for which the rotation
of the ellipsoid and the rotation of the fluid inside the ellipsoid (i. e., © and Q; see (30))
are interchanged.
The most widely known example is the Dedekind ellipsoid reciprocal to the Jacobi ellipsoid.
In this case, the axes of the three-axial ellipsoid are spatially invariable and the fluid inside
it moves around the minor axis in closed ellipses [5, 3].
3.7. Hamiltonian Formalism and Symmetry-based Reduction
We represent the Riemann equations in a Hamiltonian form. To this end, we first use the
constraint equation ¢ = const to find a representation of one semiaxis,
__"
TAAY
where vy is the volume of the ellipsoid (within a multiplier). We carry out the Legendre
transformation
oL oL oL
=, Mk=—, k=,
8/4,‘ aWk awk

H=2 pAi+ D (i + ko) = L1 g
j K

1

As

(38)

i=12, k=123,

Pi

(39)

It can be shown using the expressions for the integrals, that the vectors m = (mq, my, m3)
and p = (p1, p2, p3) are related to the momentum and vorticity of the ellipsoid via the
formulas

m=Q'M, pu=0¢, (40)



where the vectors M’ and &' are constituted by the components of the antisymmetric
matrices M’ and =’ according to the normal rule (33). In the new variables, the equations

of motion assume the form

. H H
A/:a_.7 P/:a i I_1727
9p; 0A;
rh—mxaH L= p X
= om’ HTHXon

Here, the Hamiltonian is

H=Hp + Hmny + Ue,
VAT P2+ pd) + (piAy | — paATT)?

2 2
_ mj + i mj — pi
4 Z <A/—Ak> + <A/+Ak> ’

cycle

(41)

(42)

where Ue is specified by formula (20) and it is assumed that A3 is defined according

to (38).

In addition, equations (41) must necessarily be supplemented with equations describing the

evolution of the matrices Q and ©; they have the form

. OH . oH
Q= kZJaiklij%7 O, = kZJaikl@kjaim-

(43)



Equations (41) and (43) form a Hamiltonian system with eight degrees of freedom and
uncanonical Poisson brackets,

{Aip;} =8y, Amimi} = ejem, {1, 17} = €jjrpns (44)

{mr, Qi} = Qs {14 O} = €Oy (45)

where zero brackets are omitted.

REMARK 3. The elimination of one semiaxis (38) results in the loss of symmetry of the Hamiltonian (42); therefore, the

equations for the semiaxes A; are normally left in the Lagrangian form with an undetermined multiplier [3, 1].

It can be seen from the above relationships that the system of equations (41), which
describes the evolution of the variables A;, p;, m, and p, separates; in addition, the Poisson
bracket of these variables, (44), also proves to be closed. It is not difficult to show that
that equations (41) describe a system reduced over the symmetry group (37).

Limitation: the brackets (44) obviously have two Casimir functions,

q>m = (m7 m)7 q>,U« = (l‘l'v l‘l')7 (46)

and have a rank of eight (provided that ®n, # 0, ®, # 0).

Therefore, the reduced system has generally four degrees of freedom.

In particular cases where one of the integrals (46) is zero, the reduced system has
three degrees of freedom. These are so-called irrotational (®, = 0) and momentum-free
(®n = 0) ellipsoids.

If both of the integrals (46) vanish, the reduced system has two degrees of freedom and
describes oscillations of the ellipsoid without changes in the directions of the axes and
without inner flows (this case will be considered below in detail).



REMARK 4. The canonical variables in the Riemann equations were introduced for the first time by Betti [9], who used
the commutation representations of the so(4) algebra long before the advent of the modern theory of Hamiltonian systems
on the Lie algebras. With the use of commutation, he introduced, in a quite modern way, canonical variables to reduce
the integration of the Riemann equations to the integration of the Hamilton—Jacobi equations. The Hamiltonian nature
of the Riemann equations is also considered in modern studies [12, 13, 14], which are related to the representation
of the equations of motion on an extended Lie algebra for which the actual motions are in special orbits; the value of
such a calculation for dynamics is not yet clear to us. A more formal procedure of reduction and Hamiltonization of the
Riemann equations nearly relevant to our study is described in [15]. An akin analysis is done in [16] in the context of the
Dirichlet motions in ideal magnetohydrodynamics. An alternative approach to the Hamiltonian nature, which also should

be discussed, is presented in [17].



4. Particular cases of motion

4.1. Shape-preserving Motions of the Ellipsoin
The simplest motions of the fluid ellipsoids are represented by a family of solutions for
which all the three axes of the ellipsoid are time-independent,

A; =const, i=1,2,3. (47)

Clearly, the Maclaurin and Jacobi ellipsoids are examples of such motions. In these cases,
the ellipsoid rotates as a rigid body about the principal axis (the symmetry axis for the
Maclaurin ellipsoid and the shortest axis for the Jacobi ellipsoid).

The Dedekind ellipsoid offers another example of such motions, the axes being invariable
in both their lengths and directions. As noted above, the Dedekind ellipsoid is reciprocal to
the Jacobi ellipsoid in terms of Theorem 1 (while the Maclaurin ellipsoid is self-reciprocal).
For all the above-mentioned solutions (the Maclaurin, Jacobi, and Dedekind ellipsoids),
two pairs of components of the vectors m and g vanish, the remaining components being
constant (for example, it can be assumed without loss of generality that my = uq = my =
w2 = 0,m3 = const, u3 = const).

Riemann [3] has proved the following, more general result:

Theorem 2. Let (47) be satisfied and let all the A; be different. Then m and p are
time-independent and at least one pair of components of these vectors vanishes (i.e.
m; = p; = 0 for some i).

As a consequence, we find that any motion of a shape-preserving fluid ellipsoid whose
axes do not coincide, is a fixed point of the reduced system (41) or, which is the same, of
the Riemann equations. Another proof of this statement is given in [7].

Riemann also noted new solutions — the Riemann ellipsoids — for the case where only one
pair of components of m and . vanishes (i.e. my = pq = 0, pp, my, u3, m3 # 0).



V. A. Stekloff [20, 21] analyzed in detail the case of equality of a pair of axes (A; =
A; # Ag) and showed that no shape-preserving motions other than Maclaurin ellipsoids
(spheroids) exist in this case. In this sense, he generalized the Riemann result to the
axisymmetric case (Riemann himself gave no detailed proof for this case). An attempt of
revising Riemann’s results was made in [22].

4.2. Axisymmetric Case (Dirichlet [2])
It can easily be shown that the equations of motion determined by the Lagrangian function
(24) admit a (two-dimensional) invariant manifold that consists of matrices of the form

u v 0
G=|-v u 0],
0 0 w

where detG = (u2 + vz)w = vp = const is the volume of the ellipsoid. This manifold
corresponds to an axisymmetric motion of the fluid ellipsoid (see [2]). In this case, the
matrix of the principal semiaxes is

A = (6G")"/2 = diag(V/u? + v2, Vi + v2, w).

In view of the condition det G = v, we make the substitution of variables

1/3

1/3 1/3 . i
u:v/rcosw V:V/I'Sln’L/) w=-2_
0 ) 0 ) 2

and find that the Lagrangian function (24) is

L=v" ((1 + 36) i2+r2¢2+Us) :
r



where

2arctg \/ré — 1

= r>1,
o0 —
g 2 X _ 2, r-1
: ol (A+r2)/AF1/72 Vo in (V1=
0 L s r<t

Vi—r

The variable v is cyclic; therefore, we have a first integral of the form
1 oL

—_—— = 2r21j),
27 00

Py =
which coincides within a multiplier with the single nonzero component of the momentum

M;z (19). With the use of the energy integral (20), we obtain a quadrature that specifies
the evolution of r:

2
(1+—6)i2:h—U*, Ve = Us + 5,
r r

where h = %/3 and ¢ = F’Tw are fixed values of the energy and momentum integrals. The
my,
0
minimum of the reduced potential U, corresponds to the Maclaurin spheroid.
4.3. Riemannian Case [3]
There is an invariant manifold more general than the above-described one. It is specified
by the block—diagonal matrix of the general form

uq 7] 0
G = up %] 0. (48)
0 0 w3



We compute the integrals (19) obtaining
M;Z = Uy — Uy + vqvy — vavy, M§3 = M;3 =0,
1o = urvy — vyl + uavy — valy, E53 = £33 =0,

It is also obvious that iQ and @ have in this case a block—diagonal form similar to (48);
therefore, this case corresponds to that noted by Riemann, for which, in equations (41),

we should set
my=my =0, m3 = const,

w=pz =0, p3 = const.

Thus, we obtain a Hamiltonian system with two degrees of freedom, which describes the
evolution of the principal semiaxes A1 and A,; its Hamiltonian is

_ 1A (0} +P3) + 1Ay — AT )2
2 EA,TZ

where the reduced potential is

H

+ Ux(A1, Ay), (49)

2 2
‘1 )

Ue = Ue + + s
ST (A=A T (A + A2

and cf = %(mg + u3)?, c% = %(mg — u3)? are fixed constants of the integrals.

The particular version of the system (49) for ¢y = ¢y = 0 (i. e., for invariable directions
of the principal axes of the ellipsoid) was also noted by Kirchhoff [6], who suggested that
the problem does not reduce to quadratures.

At U, = 0, the Hamiltonian (49) describes a geodesic flow on the cubic AjA2A3 = const.
This remarkable analogy between two different dynamical systems was also noted by

Riemann.



4.3. Elliptic Cylinder (Lipschitz [8])

This case can be obtained through a limiting process in the Riemannian case, with one axis
of the ellipsoid going to infinity (A3 — oc). It is, however, more convenient to start with
considering the case of a two-dimensional motion of fluid assuming that the matrix F has

the form _
F|O
-

where F is a 2 x 2 matrix with unit determinant.

Obviously, the considerations on which the derivation of the Dirichlet equations [10] was
based can be applied to this case without modifications; only the right-hand side of the
equations should be properly changed. To this end, it is necessary to use the well-known
representation of the potential of the interior points of the elliptic cylinder with a large
length / in the system of principal axes

‘, detF =1, (50)

¢ G
A(A1+A2)  AyA1+A)

u)=¢ (Uo(/) - > +0(1/1),

where £ = Gm, G is the gravitational constant and m = wpA41A; is the mass per unit

length of the cylinder. The constant Uy(/) I—» oo does not appear in the equations of
— OO

motion and can be omitted.

By analogy with the above considerations, we pass to the Lagrangian representation and
make the substitution G = FAg, where Ay = diag(A?,Ag), to obtain the Lagrangian of the
system in the form

L

D1 (867) - .

Ue = —22In(A; + A3)? = —22In(Tr(GG') + 2det G).



Based on the singular decomposition of the matrix G = Q7AG with

0
A3

)

cos¢p —sin QSH

singp  cos¢

cosy —siny A— A
siny  cost B

explicitly substituted, we obtain a Lagrangian function in the form
1. . . . . . _
L= o (A5 4+ (A — M) + (Axd — Ar)?) — Te(Ar, A2).

We can see that the variables ¢ and 1 are cyclic, and there are two linear integrals

oL oL
T py, = py. 51
Y Ps o9 Py (51)

We parametrize the relationship A1A, = vy using hyperbolic functions,
A= VO/ (chu+shu), Ay = V:)/z(chu —shu).
We use the energy integral and the integrals (51) to obtain a quadrature for the variable u:

Vo(ch2u)i? = h — U,

_ Ef c%
U. = 2ZIn(chu) + +
( ) ch?u = sh?y

where Ef = %(qu —py)?, Cz = ie(p¢ + py)?, and h are fixed constants of the first
integrals.



5. Chaotic oscillations of a three-axial ellipsoid

Let us consider in more detail the oscillations (pulsations) of a fluid ellipsoid in the
Riemannian case (48). We now represent the equations of motion of the system (49)
in a Hamiltonian form most convenient for a numerical investigation of the system. We
parametrize the surface A1A,A3 = vq using cylindrical coordinates

2
Ay =rcos¢p, Ay =rsing, Az = 2.7‘/27
r? sin 2¢S (52)
P1 —p,cos¢— sm¢57 P2 7p,sm¢— cosqb
r

The Hamiltonian (49) can be represented in the form

1 g\ P & Po op)’
H:5 1+m p,+r—2+m(p,c052¢—75m2¢) +Ux(r, @),
(53)
where ¢y = 4vy.
Since the original system is defined in the quadrant Ay > 0,A, > 0, A3 > 0, for this case
we have 0 < ¢ < /2. In this system, the transformation of variables

p=r’ =24, (54)
enables obtaining the Hamiltonian in the form

2(p? (c cosZ ) + p3 sin? w)pp + sin? 1/}(00 + p3sin? 1/})p — ZpCO cos 1) sin 1/}p¢,p¢)

H=
(c + p3sint4)

+Uu(p,0). (55)



Upon passing to new Cartesian coordinates according to the formulas

x = pcostp, y=psiny, (56)
we obtain
2 y'pj
H=2 + —— | + U«(x,y), (57)
P\Prt Ay =P (x,9)

where p = \/x? + y?2; obviously, the system (57) is defined in the upper semiplane (y > 0).

In this case, as we can see, the kinetic energy of the system has the simplest form.



by

by h=—-11,¢=0¢=0

Py

d) h=-1.07, ¢,=0.1, ¢,=0 ) h=-09,¢,=¢=0 ) h=-09,¢=¢=0

Fig. 2: The Poincaré map of system (57). For all panels, cp = 1, = 0, 6; for the map, the
planes x = 1 (a-d) and x = 0.1 (e ,f) are chosen.



Equations of motion of a gas cloud with a linear velocity field

Now consider in a similar way the case where the motion of a compressible fluid (gas) is
also defined by a linear transformation of the Lagrangian coordinates

x(a,t) =F(t)a; (58)

for the compressible medium, the condition detF = 1 is obviously not valid. Clearly, the
velocity field is linear in the coordinates of the fluid particles:

v(x,t)=x =F(t)F'(t)x.

In this case, the equations that describe the flow in the given case (for potential forces)
have the following Lagrangian representation:

r
(2) 520 1o 59)
Oa Oda poa
and the continuity equation in the Lagrangian form is
ax\ ' ox
"*‘”((aa) 6a> (60)

-1 .
. ) :
here, Tr ((a—:) é) = div v(x, ).
For the flow of the structure under study (58), the continuity equations can easily be
integrated. Indeed, if we introduce the notation ¢(t) = detF(t) using the relationship



T
(a—“'_f) = oF ', we find that Tr ( g; g—) ; therefore,
pla ) = % (61

where the function f(a) is time-independent.

Except the four functions x(a,t),p(a,t), the medium at hand is described by three
additional scalar quantities:

the density p(a,t),

the specific internal energy Uj,(a,t),

the temperature T(a, t).

Therefore, it is necessary to complement the system (59), (60) with three other equations.
Depending on these assumptions, various gasdynamic models can be obtained. Consider
three of them that are most widely known, emphasizing the explicit assumptions. Unless
the opposite is stipulated, we assume in what follows that the potential of the external
forces applied to the system, U, is zero.

The Ovsyannikov Model [23]
1°. The gas is ideal and can be described by the equation of state

p = pRT, (62)

where R is the universal gas constant.
2°. The gas is polytropic, and its internal energy depends linearly on the temperature,

Un =cvT, (63)

where cy = const is the specific heat at constant volume.



3°. The gas flow is adiabatic (i. e., there is no heat exchange between different parts
of the gas volume); therefore, the energy variations are described by the equation

o =-p(3) (64)
P

REMARK 5. Equation (64) is a consequence of the first principle of thermodynamics, 6Q = dU;, + p dV, where, in view
of assumption 3°, it is necessary to set §Q = 0, (V = %).
REMARK 6. Recall that, due to the well-known thermodynamic identity
au; 1]
(@)= (G, )
av Jr oT /vy

the internal energy of the ideal gas (62) depends only on the temperature, U;, = U;,(T).

We find using equations (62)—(64) and taking into account the relationship (61) that

B + ,yf — 0’
P P
where the dimensionless constant v = 1 + % is the adiabatic index. Thus, for the

thermodynamic quantities, we have

g9(a)
f(a)’

p(a,t) = 9(a) Un(a,t) = —RT(a )= ——p'”
@(t) ¥ - v -

where g(a) is an arbitrary, time-independent quantity.

Thus, for the existence of a solution of the form (58) in this case, it should necessarily be

required that

1
@Vag(a) =Va, (65)



; : ; _ (0o o 3 : ;
where V is a certain constant matrix, V, = (6—01, Doy’ a—aa). Then the equations of motion
for F(t) are

FTF + (det F)F'YV =0 (the Ovsyannikov equations). (66)

As Ovsyannikov has shown [23], it is sufficient to consider the following solutions of equation (65).

Theorem 3.Any solution of equation (65) reduces via a linear transformation of the Lagrangian coordinates to one of
the following four types (depending on the rank of the matrix V):

(I) V= diag(er, e2,3), 5 = £1 (i=1,2,3),
g(a) =g(s), f(a)=29'(s), s=(a,Va);
€1 é 0
m v=[0 & o0, =%1 (i=12),
0 0 0
) (a,va)’ a

. ! - - XdX
if5 #0 then g(a) =g(s), f(a)= MO 1S (a—) , Ins(x) = [ 51+525’\7+52’\;
A

a
if § =0 then g(a) =g(s), f(a)=29'(s), s=(a
(1) V= diag(e,0,0), e = 1, g(a) =g(a), f(a)= &g (a);
(IV) V=0, g(a)=const, f(a)is an arbitrary function.
From the physical standpoint, case | with a sign-definite matrix V is most interesting. In

particular, if we set V = diag(—1,—1,—1) (i.e., s = —(a, a)) and choose a linear function
g(s), we will obtain

o(a) = 3ol — (a.2)). 1(a) = po 7



where we must assume that pg > 0 (since the density of the gas is positive). In this case,
the gas is distributed with a constant density p = pg/ det(F) inside the finite ellipsoidal
volume

(a,a) = (x,(FF")"'x) < d§. (68)

Therefore, the solution of the form (58) in this case remains valid upon adding gravitational
forces (the matrix (11) with Ag = E being added to the right-hand side of equation (66)).
The problem of the motion of a compressible self-gravitating gas cloud was formulated
in [29].

The Dyson Model [26]

Assumptions 1° and 3° coincide with those in the preceding case, whereas, instead of
the polytropic behavior, we assume that

2°. The gas is isothermal at the initial time, i.e., T(a,t = 0) does not depend on a.

We substitute the pressure from the equation of state (62) into (64) and make use of (61) to obtain
U, j
Yin _ _ ¥ (69)
RT @
At the same time, as mentioned above (see Note 9), the internal energy depends only on the temperature, and the
right-hand side of (69) does not depend on a; therefore, the gas remains isothermal at all later times and (69) can be
represented as

aU;,

+RT =0. (70)

By integrating this equation in view of (63), we obtain a relationship between T and ¢:

© = @p exp (— /(.‘?T)f1 (d:—rm> dT) . (71)

Thus, according to (61), (62), and (70), the pressure can ultimately be written as
RT(p(1)

p(a,t) = Wf(a). (72)



We substitute (72) into (59) and restrict ourselves to the case where no external forces are present (i.e., U = 0). Thus,
we find that the existence of a solution of the form (58) requires that Inf(a) be a uniform quadratic function of the
Lagrangian coordinates. Since the Lagrangian coordinates are defined to within a nonsingular linear substitution, we can
represent f(a) in the form

Ha) = (1 (a,a)), 73

m
(271.)3/2
where m = [ p(x)dPx = I f(a)da is the mass of the gas.

Finally, for the elements of the matrix F, we obtain the equation of motion

F'F = RT(¢)E (the Dyson equations). (74)

Model of a Cooling Gas Cloud (Fujimoto [27])
In this model, the assumptions 1° and 2° coincide with those in Ovsyannikov’s case, i. e.,
the gas is assumed to be ideal and polytropic, while the third assumption in this case
has the form
3°. The motion of the gas is not adiabatic, the variations in the internal energy satisfying
the equation
1 -
pUn +pTr (a—") OX) _ ey, (75)
da Oa

REMARK 7. Equations (75) differ from the equations of an adiabatic process (64) by the terms —aep” 7.

We use equations (61)—(63) to eliminate Uj, from equation (75) and find

p @ (v = 1) p_tom—
P e 2020 aigmet (76)
P 7 R

To obtain a solution in the form (58), we additionally require that

P
m=1, pla,f) =2,

»(t)



where pg = const is independent of a, i. e., the density is constant inside the cloud. The solution of equation (76) in this
case has the form p(a, t) = o(t)g(a), where o(t) satisfies the equation

¢ e ==
— s =T, a= ——— 0" )
o 7} R

The function g(a) should obviously satisfy equation (65), and it can easily be shown that, according to Theorem 3, we
may choose

g(a) =1— (a,a), f(a)= const.
The condition of the finiteness of the total gas mass implies that V = diag(—1, —1, —1), the gas occupying initially the region
(a, a) < 1 (in the original physical variables, this inequality specifies an ellipsoid of the form (x, (F, F)71 [t=0 x) < 1).
Finally, we obtain the system of equations describing the dynamics of the cooling cloud in
the form

.2 T A
FTE= 2% +25/FT(FFT B F— ],
po 5 det(FFT + XE)

1—n

(In(o@")) = ~&¢p
The parenthesized term describes the gravitational interaction between the particles of
the cloud. Allowances for the gravitational interaction in the solution of the form (59) are
possible in this case due to the uniformity of gas in the cloud (p9 = const).

Model of a Dust Cloud (Gravitational Collapse)
1°. The medium (dust) does not counteract deformations,
p=0.
2°. At the initial time, the particles are distributed uniformly (inside the ellipsoid),

o(t, a)‘t:O: po = const.



For a solution of the form (59), the density obviously does not depend on the coordinates
at all subsequent times, being determined by the relationship

Po
detF(t)

p(t) =

Therefore, allowances for the gravitational attraction of particles in the clouds are possible
in this model in the framework of the linear solution (59), and the equations of motion can
be written as

F'F= Zs/FT(FFT + AE)"F#. (78)
, det(FF7 + \E)

This model is used in astrophysics to describe the gravitational collapse [25]. In particular,
it is applied in [24] to the description of the collapse of an elliptic has cloud at zero
temperature.



Lagrangian formalism, symmetries, and first integrals

We will now show that the Dyson equations (74), the Ovsyannikov equations (66) under
the condition (67), and the equations of a dust cloud (78) admit a natural Lagrangian
description. It can be shown by means of direct calculations that the equations of motion

can be written in the form
(8L)‘ oL 0
OF oF (79)

L= % Tr(FFT) — Uy(F),
where
Uin(¢p) for the Dyson model,
1

T 28/ d F[:?T \E
_ /det(FFT + AE)
Ug(F) — v 4 et( + )

for the Ovsyannikov model with gravitation,

i dA
— 2¢ / ————— for the dust-cloud model,
o 1/det(FF7 + )E)
(80)
where, as above, ¢ = detF,F € GL(3).

REMARK 8. In the Dyson model, the Lagrangian representation (79) can be directly obtained from the Hamiltonian
principle for barotropic flows (see [6])

t 1y]
6/(T—U)dt:6/Wdt, @1
4 f



where T and U are the kinetic and the potential energy of the fluid and W is the barotropic potential that satisfies the
equation

&
W= /,a—pd3x. (82)
P
Based on the above assumption, we obtain for our case within a constant:
W= /RTIn pd>x = U, (83)

These considerations can also be generalized to the Ovsyannikov model.
By analogy with the fluid ellipsoid (see Section 2, § 4), we conclude that the system (79)
is invariant with respect to linear transformations of the form

F' =SFS;, $1,S; € SO(3), (84)
which form a symmetry group I' = SO(3) ® SO(3).
The Dedekind reciprocity law (Teorem 1 in Part 1), which corresponds to a discrete
transformation F' = F', is also valid in the dynamics of gas clouds.
According to the Noether second theorem, integrals of motion linear in velocity — the

vorticity and total angular momentum of the system — correspond to the transformations
(84) and can be represented in the matrix form

==FF—F'F, M=FF —FF. (85)

In addition, there is also a quadratic integral, the total energy of the system

£= %Tr(FFT) + Ug(F). (86)



Symmetry-based reduction and hamiltonian formalism

It is not difficult to carry out a reduction based on the linear integrals (85) using the results
of the preceding section. To this end, we make use of the Riemannian decomposition

F=Q'A0O, Q,0 cSO0(3), A =diag(A,As,A3).
For the Lagrangian function of the gas cloud (79), in view of the equations
Q=wQ, O =wo,
we obtain the expression

L= % ZA,Z + % Z(Aj +Ak)2(W,' — w,-)z + (A/' —Ak)z(W,' =+ w,-)2 — Ug(A).

We denote the three-dimensional vector of semiaxes as ¢ = (A1, A2,A3) and represent

the equations of motion in the form
(8L ) oL 0
oq aq

oL\ oL « oL\ oL y
ow) “aw " 0w)  ow
This is an analog of the Riemann equations (35), (34) for the case of a gas cloud (the

difference is in the absence of the term containing pressure). These equations can easily
be written in a matrix form similar to (35) [26].



The Lagrangian transformation

_ oL _ oL oL
P=%¢ ™~ ow 9w
yields a Hamiltonian system
__OH _ OH e m o x
q78p7 P = 8q7 - 8”'7 H=H 6“7
: ! N 2 2 (87)
mj + K mj — K
H= ,D-2 + — —— )+ ]+ Ug(q).
ZZ' 42(%‘—% q; + 9k o()
The Poissonian structure of the system (87) has the form
{gi,p;} = 8, {Ami,m;} = ejumi,  {wi, 1} = €ijwpns (88)

where the zero brackets are omitted. As above, the bracket (88) has two Casimir functions

q>m = (m7m)7 q>,U« = (l‘l'v l‘l')7

which correspond to the squared total momentum and the vorticity of the system.

In the general case (®n, # 0, &, # 0), we have a Hamiltonian system with five degrees
of freedom.

In the particular case of ®n = 0 or ®, = 0, we have a system with four degrees of
freedom.

If &, = &, = 0, we obtain a system with three degrees of freedom similar to the
problem of the motion of a unit-mass point in R3 = {q}.



Particular cases of motion

Case of 7 = % (Monoatomic Gas)

Consider, in greater detail, the case of the expansion of an ellipsoidal cloud of ideal

monoatomic gas in the absence of gravitation; we will show that the system has additional

symmetries in this case, where, as is known, cy = %R and, therefore, v = %

We use (79) to represent the Lagrangian of the system as
L= 1Tr(FFT) —Uyg(F), Ug(F) = 31

T2 g T T 7 (det FY2/3)

where k = const is a positive constant (introduced for convenience). The integrals —

vorticity =, momentum M, and energy £ — were mentioned above (85), (86).

We denote the eigenvalues of the matrices FF' as Af,Ag,A% and call A; the principal

semiaxes of th gas ellipsoid (A; coincides with the semiaxes of the gas ellipsoid in

Ovsyannikov’s model at the pressure and density distribution (67); for Dyson’s model

with a normal density distribution (73), this term is only conventional). We define an analog

of the central moment of inertia of the system by the formula

(89)

I=TeFFT = A2 4 A2 4 A2. (90)

As we can see, according to (89), the dynamics of the could can be described in this
case by a natural Lagrangian system with a uniform potential of uniformity degree o = —2
(for an arbitrary ~, the uniformity degree is a = 3(1 — «)). We use the Lagrange-Jacobi
formula for uniform systems [30] to obtain

J=4g = const,

where £ is the energy of the system (for an arbitrary ~, we find / = 4E-2(3(1—v)+2)Uy).



The integration of this relationship yields
| =28 +at+b, (91)

where the integration constants a and b can be expressed in terms of the phase variables
and time according to the formulas

a=2Tr(FTF) — 4&t, b=2Et> —2Tr(FTF)t +1. (92)

In fact, @ and b are nonautonomic (explicitly time-dependent) integrals of the system
considered.

For the first time, the integral (91) for uniform systems of a degree of —2 was noted by Jacobi in the problem of the
motion of particles in a straight line. For the problem of the motion of a gas cloud, the Jacobi integral was found in
[28]. The integrals (92) for system (89) were indicated in [31], while corresponding symmetries in the particular case of
= = 0 were mentioned in [32].

Proposition 1. At t — to0, at least one of the semiaxes, A;, of the gas cloud goes to
infinity.

Except the nonautonomic integrals (92), the systems in this case admits an autonomic
quadratic integral independent of the energy integral,

J =21 — [Te(FTF)]2. (93)
For uniform systems of degree —2, this integral was found in a more general case in [34].

For the system (89) in the particular case of = = 0, it is also given in [32]. Preliminary
results on symmetries for this integral were given in [35, 36, 37].



For uniform natural systems of degree —2, a special reduction can be made to lower the
number of degrees of freedom by unity. We describe it in application to the considered
system (89).

We carry out a substitution of time and a (projective) substitution of variables

dt=1ldr, G=/""?F. (94)

It can easily be shown by direct calculation that the evolution of the matrix G(t) can be
described by a Lagrangian system with a constraint ¢ in the following form:

1 dG dG’ - 3, 1
L=yt ()~ Ule), Uul6) = ke
dr dr 2 (detG)?/3 (95)
o =Tr(GGT) =1.
A relationship between the “old” time t and the “new” time 7 can be found using (91). Note
that the system (95) differs from the Dirichlet system, since the constraint ¢ is different in

this case (in the Dirichlet problem, det G = 1). It is interesting that the energy integral for
the system (95) coincides with the integral (93):

.
g=1y= 1Tr(dG a6 ) — U,(G).
4 2 dr dr

The linear integrals in the system (95) remains the same,



furthermore, the system (95) is invariant with respect to the same transformations (84),
which form a group I' = SO(3) ® SO(3). Therefore, a symmetry-based reduction similar
to the above-described one is possible (see Part Il, Section 3), with the only difference
that, in this case, the following relationship between the semiaxes is valid:

A+ AL+ AL =1 (96)

We use the Riemann decomposition of the matrix G = Q’AO, Q,0 < SO(3), A =
diag(;h,;\z,;\g,), to obtain, in this case, a system similar to (87) but with an additional
constraint (96). To take this constraint into account and represent the equations in the
most symmetric form, we define variables g and K according to the formulas

qi=A;, K=gx—. (97)
dr
Then we finally obtain a reduced system in the form

dK OH OH dq OH

- = K + q X ) —— =q X 0,

ar oK 8q ar oK
dm OH dp OH
— =mX —. — =X —, (98)
dr om dT ou

2
5 1 mj + mj —
H=_-(K,K)+ - ! + | /| +Ug(q).
2( ) Z ( L q; + 9k o(4)
The (nonzero) Poisson brackets corresponding to the system (97) are as follows:

{Ki, Ki} = ciwke, {Kirqi} = ciwaqr, {mi,m;} = eipmi,  {pi, 1y} = itk



Thuis Poisson structure, as is known, corresponds to the algebra e(3) @ so(3) @ so(3) and
has four Casimir functions,

¢)K:(K7q)7 ¢q:(q7Q)y
d>m:(m7m)7 ¢M:(I~‘L7I‘L);

in view of the definition, (97), of the variables K and q, we have in this case
b =0, dg=1.

Thus, we ultimately conclude that

1. if &p, d,, # 0, equations (87) correspond to a Hamiltonian system with four
degrees of freedom;

2. if &y =0 (or &, = 0), we obtain a system with three degrees of freedom;
3. if &y = &, = 0, we obtain a system with two degrees of freedom.

Gaffet [33] for the case of ¢, = 0 found two additional first integrals (of the sixth degree
in the velocities) independent of the energy integral.
These integrals are polynomials of the sixth degree in momenta and have the form

1
I = 36k> (vo Y, — va +3X, + T(Xo + yg))
+6k(4T2Yy + 3PYy + 6TY,) + 27P% 4+ 4T3,

3k
Lg = (Azm, VoA2m x (VAA’m+ ——  _m ) ,
Vs (919293)%/3 )



where A = diag(g1,q2,93) and the quantities X, ¥;, P, and T can be expressed in terms
of the symmetric matrix

1 Z K Ky m3 m3
329 " qf 77 73
LT 9793 93—9;
3
K m
VO = m3 1 LATAAY 3 1
?—q2 3 /:221 9 @ 3—q2
3
my my I Ki _ K3
3—q? 3—q? 349 @

as follows:
X =(919293) K V3 Tr(VEA?), Vi =(919293) 2D/ Tr(VEA2),

1
T == 2(919295)*° Tr(V), P =(q19293)* det Vo.

The Case of Axial Symmetry
As in the case of a fluid ellipsoid, it can easily be shown that the system (79) admits a

three-dimensional invariant manifold formed by matrices of the form

u v 0
F=|-v v 0] (99)
0 0 w

The liner integrals (85) simplify in this case becoming

Zip=—Mpp =2(uv —vir), =13 =7=p3 =Mj3 =My =0. (100)



Consider the Ovsyannikov model with gravitation (80) and make the substitution of variables

1 1 .
U= ——=rcosvy, V= ——=rsiny,
V2 ¥ V2 v

Then the Lagrangian function of the system assumes the form

w =2z

1. . .
L= 5(r2 + I'ZI/JZ +zz) — Uy(r, 2),

P 1 (101)
Ug=————— +Uer,2),
ST 1 (r22)rT e(r,2)
where the energy of the gravitational field Ue can be expressed in terms of elementary
functions:
2arctg/x? — 1 51
- = X b
0o VX2 —1
Ue — 2&/ dX 2 y
e O+ Wor2  z in (V12
s AH2IVA+z i)

Vi—2
where x = \/Lié is the semiaxis ratio. Since the Lagrangian (101) is independent of 1,

there is the cyclic integral
oL .
— = rzz/; = ¢ = const,

0y

which coincides with the integrals (100) within a multiplier.



For a fixed value of this integral, we make the Legendre transformation p, = % =rp; =
% = z and obtain a Hamiltonian system with two degrees of freedom in the canonical
form
1
2 2

H= 37 +pz) + Us(r,2), U= ﬁ + Ug(r,¥); (102)
here, U. is the reduced potential.
Consider the simplest (integrable) case, the motion of a monoatomic gas (y = %) without
allowances for gravitation (i.e., Ue = 0; see also the preceding section).
It was shown above that the system in this case admits a reduction by one more degree
of freedom and, therefore, reduces to a quadrature. Indeed, we make a substitution of
variables and time of the form

r=Rcosf, z=Rsinb, dz‘:,‘?za’T7

where, in view of the conditions r > 0 and z > 0, the variable 6 € (0,7/2). We obtain
the following equations for R and 6:

a2

dz(R)—4H—const
1(ﬁ)z-i-1 ¢ +§ ol = hq = const
2 \ dt 2cos?0 ' 2 (cos?sing)2/3 ' ’

The quadrature for 0 at ¢ = 0, with certain limitations on the initial conditions, was obtained
in [28]. As we can see, the evolution of §(t) can be determined by the reduced potential

c? N 3 k
2 cos2f = 2 (cos26sinf)2/3"

U.(0) =



At all values of the parameters ¢ and k, this function has one critical value 6y in the
interval (0,7/2), in which U. reaches its minimum. This value corresponds to the self-
similar expansion of a spheroidal gas cloud. In other cases, the expansion of the cloud is
accompanied by oscillations in the semiaxis lengths, with 8 varying in the interval (61, 05),
where 6; are the roots of the equation U.(0) = hy.

In the general case, Ue # 0, the trajectories of the system (102) are not finite. However,
it can easily be shown that, at k > 91—622/3(\/ 665 — 21)c2 ~ 0, 43¢, the reduced potential
has a minimum at the point

1
6y = arctg \72, Ry = g(CZ +3. 21/3k).

Therefore, near the minimum of the energy U« (6o, Rp), the trajectories of the system are
finite and a Poincaré map can be constructed. Such a map in the plane 6 = % as the
plane of section is shown in Fig. 3. A chaotic layer that originates from the splitting of
resonant tori can be clearly seen in this figure, which testifies to the nonintegrability of the

system (102).



Fig. 3: The Poincaré map of the system (102) at kK = ¢ = £ = 1 in the section plane
0=7.
4



Generalization of the Riemannian Case
An invariant manifold of the form (48) also exists for gas ellipsoids, i.e.,

uq 7] 0
F=llu vo 0]. (103)
0 0 w3

As in the Riemannian case, it can be shown for a fluid ellipsoid that, in the case of gas,
the following relationships are also valid:

my=my =pug =pup =0, m3=const, u3 = const.

Thus, we conclude that, according to (87), the evolution of the semiaxes A; = q;,i = 1,2,3
can be described by the third-degree Hamiltonian system

2

H=1p?4uuq), U 4 _,_9
=P «\q), * —
2 (1 —92)? (91 +g2)?

where g, p are canonically conjugate variables and ¢y = %(mg, + p3), €2 = %(mg — u3)
are fixed constants.

It was shown above that, for a monatomic gas (y = %), without taking into account
gravitation (Ue = 0), the system admits a reduction by one more degree of freedom. As a
result, we obtain in this case a system of the form

+ Uq(9), (104)

dK OH OH dq OH
—=Kx _— +q9 X —, —— =4 X 0,
ar oK oq ar oK

2 2
k g €5

+ + .
(919293)?3 (g1 —a2)?> (g1 +92)?

— 1 . . 3
H= EKZ +U«(q), U«(q)= 3



This system is equivalent to the problem of the motion of a spherical top in an axisymmetric
potential [18]. As shown in [31], this system is integrable provided cf = c%. Atci=c; =
0, the additional integral of the third degree in the velocities has the form

K19293 + K2q3q1 + K39192
(919293)%/3

Fs = KiKoK3 — 3k

If ¢y = c; = ¢ # 0, we have an additional sixth-degree integral

+4ﬂ#9+%ﬁX%9+3M@

Fo = (F3 + Fa)’ 7
a3

where

4c2q1g292 4c? 23 23
_ Acfq19293 fzjﬁﬂﬁiiﬁ7gzgﬁﬂifm&—y+ﬁ

Fe @—-g2 (g% — g2)? 9192

In the more general case of cf #* c%, the system (103) becomes nonintegrable.

Figure 4 shows the corresponding Poincaré map in the Anduaye variables, which are
traditionally used for reductions in the problems of rigid-body motion with a fixed point [18].
The break down of the resonant tori and the birth of isolated periodic solution can be clearly
seen from the figure, which is evidence for the nonintegrability of the problem.



Fig. 4: Poincaré map of the system (103) at an energy level of H = 30 at
k=1/3,c1 =1,¢c, = 0.3 in the section plane g = 7.



References

1

[2]

[3]

[4]

[3]

[6]

[7

[8]

Chandrasekhar S., Ellipsoidal Figures of Equilibrium, New Haven, London: Yale
University Press, 1969.

Dirichlet, G. L., Untersuchungen iiber ein Problem der Hydrodynamik (Aus dessen
Nachlass hergestellt von Herrn R. Dedekind zu Ziirich), J. reine angew. Math.
(Crelle’s Journal), 1861, Bd. 58, S. 181-216.

Riemann, B., Ein Beitrag zu den Untersuchungen iiber die Bewegung einer fliissigen
gleichartigen Ellipsoides, Abh. d. Kénigl. Gesell. der Wiss. zu Géttingen, 1861.

Jeans, J.H., Problems of Cosmogony and Stellar Dynamics, Cambridge University
Press, 1919.

Dedekind, R., Zusatz zu der vorstehenden Abhandlung, J. reine angew. Math.
(Crelle’s Journal), 1861, Bd. 58, S. 217-228.

Kirchhoff, G., Vorlesungen iiber mathematische Physik. Mechanik, Leipzig:
Teubner, 1876.

Padova, E., Sul moto di un ellissoide fluido ed omogeneo, Annali della Scuola
Normale Superiore di Pisa, t. 1, 1871, p. 1-87.

Lipschitz, R., Reduction der Bewegung eines fliissigen homogenen Ellipsoids auf das
Variationsproblem eines einfachen Integrals, und Bestimmung der Bewegung fiir den
Grenzfall eines unendlichen elliptischen Cylinders, J. reine angew. Math. (Crelle’s
Journal), 1874, Bd. 78, S. 245-272.



[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17

Betti, E., Sopra i moti che conservano la figura ellissoidale a una massa fluida
eterogenea, Annali di Matematica Pura ed Applicata, Serie I/, 1881, vol. X,
pp. 173-187.

Lyapunov, A.M., Collected Works, Collected Works, Vol. 5,, Moscow: lzd. Akad.
Nauk, 1965.

Darwin, G. H., On the Figure and Stability of a Liquid Satellite, Phil. Trans. Roy.
Soc. London, 1906, vol. 206, pp. 161-248; see also Scientific Papers, vol. 3,
Cambridge University Press, 1910, p. 436.

Rosensteel, G. and Tran, H. Q., Hamiltonian Dynamics of Self-gravitating Ellipsoids,
The Astrophysical Journal, 1991, vol. 366, pp. 30-37.

Rosensteel, G., Gauge Theory of Riemann Ellipsoids, J. Phys. A: Math. Gen., 2001,
vol. 34, L1-L10.

Graber, J. L. and Rosensteel, G., Circulation of a Triaxial, Charged Ellipsoidal
Droplet, Phys. Rev. C, 2002, vol. 66, 034309.

Fassd, F. and Lewis, D., Stability Properties of the Riemann Ellipsoids, Arch.
Rational Mech. Anal., 2001, vol. 158, pp. 259-292.

Holm, D.D., Magnetic Tornadoes:Three-Dimensional Affine Motions in Ideal
Magnetohydrodynamics, Phys. D, 1983, vol. 8, pp. 170-182.

Biello, J.A., Lebovitz, N.R., and Morison, P.J., Hamiltonian Reduction of
Incompressible Fluid Ellipsoids, Preprint,
http://people.cs.uchicago.edu/ lebovitz/hamred.pdf.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Borisov, A.V. and Mamaev, |.S., Rigid Body Dynamics, Moscow-Izhevsk: Inst.
Comp. Sci., RCD, 2005 (in Russian).

Roche, E., Mémoire sur la figure d’'une masse fluide, soumise a I'attraction d’un
point éloigné, Acad. des Sci. de Montpellier, 1849-1850 t. 1, pp. 243-262,
333-348; 1852, t. 2, pag. 21.

Stekloff, W., Probléme du mouvement d’une masse fluide incompressible de la
forme ellipsoidale les parties s’attirent suivant la loi de Newton, Annales
scientifiques de I'E.N.S. 3¢ série, 1908, t. 25, pp. 469-528.

Stekloff, W., Probléme du mouvement d’une masse fluide incompressible de la
forme ellipsoidale les parties s’attirent suivant la loi de Newton (Suite.), Annales
scientifiques de I'E.N.S. 3¢ série, 1909, t. 26, pp. 275-336.

Marshalek, E.R., An overlooked figure of equilibrium of a rotating ellipsoidal
self-gravitating fluid and the Riemann theorem, Phys. Fluids, 1996, vol. 8, no. 12,
pp. 3414-3422.

Ovsyannikov, L.V., A New Solution of the Equations of Hydrodynamics, Dokl. Akad.
Nauk SSSR (N.S.), 1956, vol. 111, pp. 47-49 (in Russian).

Lynden-Bell, D., On the Gravitational Collapse of a Cold Rotating Gas Cloud, Proc.
Camb. Phys. Soc., 1962, vol. 58, pp. 709-711.

Zel’dovich, Ya.B., Newtonian and Einsteinian Motion of Homogeneous Matter,
Astronom. Zh., 1964, vol. 41, no. 5, pp. 872-883 [Soviet Astronomy, 1964, vol. 8,
no. 5].



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Dyson, F.J., Dynamics of a Spinning Gas Cloud, J. Math. Mech., 1968, vol. 18,
no. 1, pp. 91-101.

Fujimoto, F., Gravitational Collapse of Rotating Gaseous Ellipsoids, Astrophys. J.,
1968, vol. 152, no. 2 pp. 523-536.

Anisimov, S.I. and Lysikov, lu.l, Expansion of a Gas Cloud in Vacuum, Prikl. mat.
mekh., 1970, vol. 34, no. 5, pp. 926-929 [J. Appl. Math. Mech., 1970, vol. 34, no.
5, pp. 882-885].

Bogoyavlenskij, O.l., Dynamics of a gravitating gaseous ellipsoid, Prikl. mat. mekh.,
1976, vol. 40, no. 2, pp. 270-280 [J. Appl. Math. Mech., 1976, vol. 40, no. 2,
pp. 246-256].

Jacobi, C.G. J., Problema trium corporum mutuis attractionibus cubis distantiarum
inverse proportionalibus recta linea se moventium, Gesammelte Werke, Vol. 4,
Berlin: Reimer, 1886. S. 531-539.

Gaffet, B., Expanding Gas Clouds of Ellipsoidal Shape: New Exact Solutions, J.
Fluid Mech., 1996, vol. 325, pp. 113-144.

Gaffet, B., Sprinning Gas without Vorticity: the Two Missing Integrals, J. Phys. A:
Math. Gen., 2001, vol. 34, pp. 2087-2095.

Gaffet, B., Sprinning Gas Clouds: Liouville Integrability, J. Phys. A: Math. Gen.,
2001, vol. 34, pp. 2097-2109.

Albouy, A. and Chenciner, A. Le probléme des n Corps et les Distances Mutuelles,
Invent. Math., 1998, vol. 131, pp. 151-184.



[35] Gaffet, B., Analytical Methods for the Hydrodynamical Evolution of Supernova
Remnants. Il - Arbitrary Form of Boundary Conditions, Astrophysical Journal, Part
1, vol. 249, 1981, pp. 761-786.

[36] Gaffet, B., Two Hidden Symmetries of the Equations of Ideal Gas Dynamics, and
the General Solution in a Case of Nonuniform Entropy Distribution, J. Fluid Mech.,
1983, vol. 134, p.179-194.

[37] Gaffet, B., SU(3) Symmetry of the Equations of Unidimensional Gas Flow, with
Arbitrary Entropy Distribution, J. Math. Phys., 1984, vol. 25, no. 2, pp. 245-255.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1800 1800]
  /PageSize [595.276 841.890]
>> setpagedevice


