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How can we quantify tidal dissipation?

By direct IR measurements...

Thermal emission map by NIMS/Galileo



How can we quantify tidal dissipation?

Three important issues:

1- Only hot spots are quantified

2- Barely feasible in general!

Low signal, other sources of heating (radioactive decay, Solar heat, gravitational
contraction...)

3- Thermal equilibrium is not sure
Orbital elements and interior properties may change while heat is transported at the surface

Enceladus "Cold Geyser" Model

H,0 vapor plus ice particles

HOlce T=~77K
Vent to surface

Pressurized Liquid H O Pocket T =273 K

ry

Hydrothermal Circulation
& Convecting Ice

Tidal Heating Hot Rock Tidal Heating

- A more dynamical way to derive heat production is needed



The tidal effects and the estimation of Q

from long term evolution



Tidal effects on the primary

Let’s consider a satellite raising tides on its primary

Dissipation implies time lag At which is connected to the geometrical lag 6 by: 2(Q-n)At=6

L=mna?+1Q

di/dt=0 => [&= —% mnad®

E=-GMm/2a + 1/2 1Q°

B 10&+ % mn’ad

Introducing k, and Q:
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Tidal effects on the primary

The tides raised in the planet = exchange of angular momentum
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Tidal effects on the primary

Q is defined by:
Ql=AE/(2(¥]

Where AE is the energy loss during one cycle and E is the maximum energy stored in the
tidal distortion

Low Q-2 high dissipation, high Q=2 low dissipation

A second parameter of interest is the Love number k, NASAVSPL

which characterizes the response of the body to the tidal potential

The orbital tidal acceleration/deceleration of a satellite are dependent on the ratio k,/Q



An example: tidal dissipation in giant planets

A paper of reference that estimates Q for the giant planets is Goldreich and Soter (1966)

Assuming that the main satellites were formed beyond the synchronous orbit, one can
give a lower bound for Q

Above synchronism Below synchronism
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An example: tidal dissipation in giant planets

A paper of reference that estimates Q for the giant planets is Goldreich and Soter (1966)

Assuming that the main satellites were formed beyond the synchronous orbit, one can
give a lower bound for Q

Above synchronism Below synchronism

Satellite current
distance
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An example: tidal dissipation in giant planets

Estimation of lower bound of Q for the giant planets by Goldreich and Soter (1966)

Quupiter = 1.0 10 (I0)

Qqaiun = 6.0 10% (Mimas)

. Let’s remind that:
Qranus > 7-2 10% (Miranda) Q=80
O*Earth =260
Values further improved by Gavrilov and Zharkov (1977) Q=20

Quupiter > 2.5 104 (I0)
Qg = 1.4 10* (Mimas)
Quranys = 5-0 103 (Miranda)

These values are still good references!



An example: tidal dissipation in giant planets

Caveats:
1- Strong assumption on the past evolution of the system (formation, resonances,

dissipation in satellites...)

2- Only averaged value of Q over 4.5 Byr is obtained. In particular, current tidal
dissipation may be somewhat different (Q#cste)



A second example: the terrible fate of Phobos

Phobos and Deimos have been discovered by A.Hall in 1877.

Sharless (1945) discovered an unexpected acceleration on Phobos...



A second example: the terrible fate of Phobos

Why Phobos is doomed...

al Q
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Question: how much time will that take place?
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A second example: the terrible fate of Phobos

So far, only two frequency dependence of Q have been used: Q=cst (most of the time)

Q o 1/f (Singer/Mignard model)

BUT: recent experiments strongly suggest: Q & f ¢ (Karato 2009)
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- Depending of the rheology model, Phobos’ lifetime changes by 50%!



The tidal effects and the estimation of Q

from short term evolution



Satellite in spin-orbit resonance

If e=0 = no internal friction: the tidal bulges are facing the COM of the primary




Satellite in spin-orbit resonance

If e20 = internal friction: the tidal bulges are facing the COM of the primary

Orbital energy is dissipated as
consequence of:

a- distance variation (radial dissipation)

b- Kepler’s 2" law (tangential
dissipation)
E=-GMm/2a

GMm
J o= ,» & =>aincreases
a

L=mna’\1-¢e* +1 Q_~mna’\1-¢’

dL/dt=0 => e decreases




Competition between tidal dissipation effects
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Orbit determination of natural satellites

— Orbit determination of natural satellites and spacecraft follow exactly the
same methodology...

Method in three steps:

1- modeling of the dynamical system
2- gathering the observations

3- fitting the model to the observations

Today, this kind of work is done completly numerically
S/C: GINS, DPODP, GEODVYN, ...

SAT: NOE, SATELORB...



Orbit determination of natural satellites

Step 1: Modeling of the dynamical system

Equations of motion
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Orbit determination of natural satellites

Step 1: Modeling of the dynamical system

Equations of motion
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Orbit determination of natural satellites

Step 1: Modeling of the dynamical system

Equations of motion
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Extended gravity fields




Orbit determination of natural satellites

Step 1: Modeling of the dynamical system

Equations of motion
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Orbit determination of natural satellites

Step 1: Modeling of the dynamical system

Equations of motion
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Relativistic terms



Orbit determination of natural satellites

Step 1: Modeling of the dynamical system

Equations of motion
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Initial conditions are required to solve for equations of motion...

Problem: How will we find the « real » initial conditions of the system we consider?



Orbit determination of natural satellites

Problem: How can we find the « real » initial conditions of the system we consider?

r
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Clearly we need to know at every observation time t the quantity

Variational equations
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Orbit determination of natural satellites

Problem: How can we find the « real » initial conditions of the system we consider?
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Orbit determination of natural satellites

Problem: How can we find the « real » initial conditions of the system we consider?

r
or,

de, t

Clearly we need to know at every observation time t the quantity

Variational equations
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Computation of variational equations can be time consuming and requires a lot of
development time!



Orbit determination of natural satellites

Step 2: gathering the observations

Direct astrometric measurement Undirect astrometric measurement
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Astrometric remeasurement
(benefit from modern scanning machine)
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Orbit determination of natural satellites

Step 2: gathering the observations

Accuracy of the observations?

Direct astrometric measurement

rule of thumb: 100 mas

=30 km (Mars), 300 km (Jupiter), 600 km (Saturne), 1200 km (Uranus)

Undirect astrometric measurement (photometry)

=few tens of km (not dependent on the distance, but require larger telescopes for
large distance)

Astrometric remeasurement (benefit from modern scanning machine)

35 mas (intersatellite) and 80 mas (RA, DEC) for good photographic plates (Robert et
al. 2011). But may greatly depend on the quality of the plates...



Orbit determination of natural satellites

Step 3: Fitting the model to the observations

Step 1 (Integration of the
equations of motion +

Step 2 (observations) variational equations)

Step 3 (fitting the model)
Approximation by a linear N .

-~

/ \\ ~
system ( O-C ) = Z Ai(c)) L A+ O(,(AQ{]Q)
=> least squares method I=1 A

L unknown




Example of the Mars system

Former works:

Sinclair, 1972
Shor, 1975

b
975-1980)

Sinclair, 1989
Jacobson et al. 1989
Chapront-Touzé, 1990
Morley, 1990

Emelianov et al. 1993

‘Phobos 2:{1589)

= All these models were analytic
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Example of the Mars system

Astrometric post-fit residuals for Phobos after fit of initial state vectors, Mars
dissipation factor Q and Phobos’ oblate parameters c,,, c,,
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Lainey, Dehant and Patzold (2007)



Example of the Mars system

Estimation of Phobos tidal acceleration over time (Jacobson 2010):

Reference s x 1073 K2 Q %
(deg yr=2) (deg)
Sharpless (1945) 1.882 £0.171
Shor (1975) 1.427+0.147
Sinclair (1978) 1.326 £0.118
Jacobson et al. (1989) 1.249 £ 0.018
Chapront-Touzé (1990) 1.270 £0.008
Emelyanov et al. (1993) 1.290 £0.010
Bills et al. (2005) 1.367 £ 0.006 0.163 85604 003346 £ (000014
Rainey & Aharonson (2006) 1.334 +0.006 0.153 78.6 £0.8 073645 £ 070039
Lainey et al. (2007) 1.270 £ 0.015 0.152 79.9 £0.7 073585 £ 070031
Current 1.270 £ 0.003 0.152 82.8£0.2 073458 £ 020009

Pretty good agreement since decades!



Example of the Jovian system




esvoTerc residucls {ascssc)

Example of the Jovian system

T TR T | ol
0.1 arcsec ~ 300 km
1801 #® HW___ds 3= wmngy

0.025 arcsec ~ 75 km

Lainey, Arlot, Karatekin, Van Hoolst
(Nature, 2009)

o

nag -

—>Residuals after fitting the
initial state vectors of all
the Galilean moons and the
ratios k,/Q inside lo and
Jupiter

a

mutual event residuals




Table of residuals

Example of the Jovian system

Remind: 0.1 arcsec ~ 300 km

<Hocoss = 0 4coss <Hs5> Os N
-0.0023 0.0655 0.0009 0.0661 2405
0.0003 0.0638 0.0036 0.0635 2423
0.0065 0.0817 0.0070 0.0884 2625
0.0005 0.0971 -0.0052 0.1106 2824

o, <u,> N,
<u >
-0.0375 0.1570 0.0042 0.1817 274 287
-0.0531 0.1515 0.0184 0.2311 186 194
-0.0402 0.1403 0.0375 0.3094 106 106

Photographic and
CCD observations

Heliometer
observations

(before 1902)



Global heat flow (W/m?2)

Example of the Jovian system

Our fit of I0’s dissipation provides k,/Q =0.015 + 0.003

One can compare our value with the ones derived from IR emission
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We obtained a very good agreement and confirm the values derived from heat
flux observations!



Example of the Jovian system

Our value of the Jovian dissipation is Q=35600 * 6600 assuming k,=0.379

The estimation from (Goldreich and Soter (1966), Gavrilov and Zharkov
(1977))

2.5 10%< Q <2.510°

upiter

Our estimation gets a much smaller error bar AND it is derived from
observations



Another way to determine tidal dissipation on short time scale

Tidal bulges induce short
periodic effect on artifical
satellite motions!




Another way to determine tidal dissipation on short time scale




Another way to determine tidal dissipation on short time scale

Ray et al. (2001) provided the first estimation of Q
(terrestrial tides) Q=260 +/- 80




Another way to determine tidal dissipation on short time scale

Ray et al. (2001) provided the first estimation of Q Konopliv et al. (2011) still cannot
(terrestrial tides) Q=260 +/- 80 derive Q from S/C




Coming to granular material...



Coming to granular media (short term dynamics)

First application of full dynamical model to MBA in 2010: (Marchis et al. 2010)

So far, the models consisted in a precessing orbit... New observations required a
more sophisticated model



Coming to granular media (short term dynamics)

We have introduced a full dynamical model, including Eugania’s J,, Solar and planetary

perturbations
0.15F o : 3 Petit-Prince Princesse
F o For Petit—Prince = - - -
0.10F A difference in RA 3 Semi-major axis
T O aifterence v DEC = (@) in km 1164.6 611.1
é ’ § 3 a o o 3 min, max (a) 11644, 1164.8 610.8, 611.6
= 0.00F e ° o LE 1-6 (a) 0.1 0.2
@ —005E o _5 Mean motion
-0.10 ;— — (n) in rad/day 1.3322 3.5047
—0.15E , . . , 3 min, max (n) 1.3318, 1.3326 3.5008, 3.5077
1998 2000 2002 2004 2006 2008 1- (n) 0.0002 0.0016
Year ..
Eccentricity
. s . e} 0.0051 0.0708
We could initial state vectors, Eugema S Jz min, max (e) 0.0040, 0.0062 0.0682, 0.0738
. . 1-0 (e) 0.0006 0.0018
and its polar coordinates... o
Inclination
i) in deg 9.22 18.10
min, max (i) 8.97,9.35 17.98, 18.19
fei . 1-0 (i) 0.10 0.05
Precision vs. Accuracy: .
Mean rate for the node
Our polar coordinates are close to the (dQfde) in deg/day 0.006 0.550
min, max (dQ/dt) 0.068, ~0.050 0.563, ~0.537
expected one from photometrie 1-0 (de/d) 0.004 0.006
Mean rate for periapsis
dw/dt) in deg/day 0.003 1.0
. min, max (dw/dt) 2.16, -2.65 04,16
But, our value of J, is much smaller than 1-0 (doojde) 1.42 04

expected assuming constant density).
Eugenia is far from a simple oblate body, our estimation is biased by other harmonics

(cyy, o)

This work is going on adding more observations and studying different systems (thesis
of L.Beauvalet)



Coming to granular media (long term dynamics)

What about Phobos’ history if it is a rubble pile? (p=1.876 g/cm3)

Significant tidal dissipation may have occured in the past (possible high eccentricity
phase) = capture scenario still possible?



