Rotation and Reshaping of Self-Gravitating Aggregates

Systèmes Autogravitants Granulaires 2011 Nice France 17th - 21st October, 2011

Paul Sánchez and Daniel J. Scheeres Colorado Center of Astrodynamics Research

University of Colorado Boulder

Thursday, October 20, 2011

أماكا

Asteroid Shapes and Rotation

Itokawa

Kleopatra

Ida

Eros

Toutatis

KW₄

Celestial and Space Flight Mechanics Laboratory

Thursday, October 20, 2011

Simulation Method

Soft-Sphere DEM:

- Discretizes time, making use of a time-step (δt) for the integration of the equations of motion.
- Given a set of initial conditions, the code integrates the equations of motion to find positions and velocities at the time t+δt.
- This new configuration allows for the calculation of forces/accelerations which in turn are used for the integration.
- A collision occurs when **particles overlap**.
- Collisions are handled through a repulsive potential which cut-off distance is the radius of the particle (linear and non-linear springs and dashpots are commonly used).
- Gravitational Forces:
 - The simulation uses a structure similar to that of a tree-code, but with a static grid.
 - Gravity between close neighbours is calculated exactly.
- Simulations:
 - Periodic boundary conditions.
 - The simulations used 2000, 3000, 4000 and 8000 spherical particles (8-9m).
 - The particle density changed from 3200 up until 5200 kg/m³.
 - Angular velocity is increased in big-fixed steps.

Gravity Algorithm

University of Colorado Boulder

Celestial and Space Flight Mechanics Laboratory

В

i=1, 2, ... N_B

$$\bar{\sigma} = \frac{w}{V} \sum_{c \in K_V} \vec{f} \otimes \vec{l}$$

w = 1 within the volume $w = \frac{1}{2}$ in the edge the volume

Principal stresses: σ_1 , σ_2 and σ_3

Drucker-Prager Yield Criterion

$$\sqrt{\frac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right] - Y - 3sp \le 0}$$

Y is related to the cohesive forces (zero for this research)

$$p = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$$
 is the hydrostatic pressure

$$s = \frac{2\sin\theta}{\sqrt{3}(3 - \sin\theta)}$$
There is no unique relation be
we provide the two formulas

There is no unique relation between s and the angle of friction, so here we provide the two formulas that furnish two limit possibilities.

Spherical Aggregates

N=3000 - no friction

Initially the body becomes an oblate spheroid, then it sheds material, becomes prolate and keeps on shedding material until it becomes highly prolate.

N=3000 - friction

Initially the body becomes an oblate spheroid, then it sheds material, but it remains highly oblate even at the maximum spin rate applied.

Spherical Aggregates

N=3000 - no friction

N=3000 - friction

Angle of friction: 14°-16° (Drucker-Prager). First reshaping event: 3.6x10⁻⁴ rad/s Angle of friction: 30°-45° (Drucker-Pager). First reshaping event: >5.3x10⁻⁴ rad/s

Ellipsoidal Aggregates

N=3000 - no friction

At a density-dependent spin rate the aggregate elongates, material shedding starts and is continued until the body is disrupted.

N=3000 - friction

At a higher density-dependent spin rate the aggregate elongates, material shedding takes place, but disruption takes place by fission.

Ellipsoidal Aggregates

2000, 3000, 4000 and 8000 particles.

No friction

Friction

Angle of friction: 12°-14° (Drucker-Prager) First reshaping event: 3.6x10⁻⁴ rad/s Angle of friction: 24°-34° (Drucker-Prager). First reshaping event: >5.3x10⁻⁴ rad/s

Evaluation of the Yield-Stress Expression

Simulations in Numbers

	Sphere-nf	Sphere-fr	Ellipsoid-nf	Ellipsoid-fr
Angle of Friction (θ)	14°-16°	30°-45°	12°-14°	24°-34°
Packing fraction (ф)	0.65	0.65→0.61	0.65	0.65→0.61
Critical ang.vel. (ω - rad/s)	3.6x10 ⁻⁴	>5.3x10 ⁻⁴	3.6x10 ⁻⁴	<5.3x10 ⁻⁴
Period (T - h)	4.85	<3.2	4.85	>3.2→2.9*

- Spherical aggregates seem to be structurally stronger than ellipsoidal ones.
- Angles of friction obtained through the evaluation of the Drucker-Prager criterion are higher for spherical than for ellipsoidal aggregates.
- Only ellipsoidal aggregates formed by 8000 particles could rotate at higher velocities.

Shape History - Comparison with Theory

2000, 3000, 4000 and 8000 particles.

dynamically equivalent equal-volume ellipsoid (DEEVE)

Shape History - Comparison with Theory

2000, 3000, 4000 and 8000 particles.

Holsapple, K., On YORP-induced spin deformations of asteroids, Icarus, 2010

dynamically equivalent equal-volume ellipsoid (DEEVE)

Celestial and Space Flight Mechanics Laboratory

University of Colorado

Boulder

Density Dependance

Conclusions

- Spherical aggregates are in general stronger than ellipsoidal ones.
- Frictionless aggregates deform at lower spin rates than aggregates with friction.
- Angles of friction are always higher if friction is included in the simulations.
- Regardless of the source of friction it is possible to recover the theoretical results for the DEVEEs.
- The actual shape of the aggregates however, depends on whether of not friction was present.
- Open Questions:
 - How are these results affected by size distribution, number of particles used and other material parameters?
 - What determines if disruption is reached by shedding or by fission?
 - How do cohesive forces affect these results?
 - How can cohesive forces be implemented given that they are important for particles in a size range that would take too long to simulate?
 - What about particles of irregular shapes?

Thanks, any questions?

