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Introduction p

Why is granular matter so difficult to model?

Definition 1 Collection of grains for which thermal effects are small

compared to variations of potential energy

Definition 2 ...and such that the forces necessary to deform the system

are small compared to those necessary to break the grains

1. The behaviour is dominated by dissipative contact interactions:

• Inelastic collisions e << 1

• Friction and viscous deformations at enduring contacts

=⇒ No scale separation between micro, meso and macro description
=⇒ Thixotropic behaviour
=⇒ Non-local effect
=⇒ Segregation patterns

2. Non-linearity of force transmission

• Contact rigidity

=⇒ Mesoscopic force chains
=⇒ No obvious representative elementary volume
=⇒ Important role of fluctuations



Introduction p

Granular matter is thixotropic



Introduction p

Non-local effects:

⇒ Frictional properties depend on the height of the flow (Pouliquen 1999)



Introduction p

Segregation patterns (size, friction)

⇒ Non-uniformity of granular flows
Gray & Chugunov 2006, Taberlet et al. 2006



Introduction p

Radjai et al, 1996

⇒ How to include force chains in mean quantities?



To Summarize p

Simulating granular matter

→ Reproducing the multi-contact dynamics
→ Reproducing the contact features

Modeling granular matter

→ Which theoretical frame(s) to model the different ”states” ?
→ Which variable(s) (volume fraction)?

In the case of fluid-like behaviour
→ How to define an equivalent viscosity?



To Summarize p

Discrete Continuum 

Theoretical modeling towards equivalent continuum  

How to simulate granular matter numerically? 

How to model granular matter physically? 



OUTLINE p

• Discrete Simulation of Granular Media

• Continuum Modeling: Defining an equivalent viscosity

• Continuum vs discrete simulation



SimulatingGranularMedia p

1. Modeling the interactions between the elements of the solid discrete phase

2. Modeling the rheology of the intersticial fluid

3. Modeling the interactions between the solid discrete phase and the intersticial fluid

We consider cases dominated by solid-solid interactions

=⇒ No explicit account of the intersticial fluid

• No hypothesis on the mean behavior

• Hypothesis on the nature of the interactions between the many solid ele-
ments

=⇒ Account of the existence of different time and length scales

• The system scale L and t

• The grain scale D, ` and (D/g)1/2

• The contact scale λ << D and τ << (D/g)1/2



SimulatingGranularMedia p

Newtonian Methods: writing the equations of motion for the grains

Np grains, N contacts between them
(in 2D)

mi

dvi

dt
=
∑
k∈Ni

F ik + F ext

Ii
dωi

dt
=
∑
k∈Ni

C ik +Cext

3×Np equations

3×Np + 2×Nc unknowns

⇓
2×Nc relations missing

= contact laws

⇒ Prescribing the shape of the interactions between the grains ...



SimulatingGranularMedia p

Newtonian Methods: modeling contacts

- Deformability/rigidity of the surfaces?
- Dissipation of energy?
- Level of realism required at the contact scale to achieve realism at the system scale?

The soft model: visco-elasto-plastic contact between two surfaces.

- a: contact surface area
- δ: normal deformation, overlap
- τ : typical time scale of a contact

F = F(δ, δ̇, a, τ )

How to handle the small time and length scales related to the contact phenomena?



SimulatingGranularMedia p

The Molecular Dynamics (Cundall)

Contact model

Combination of a dashpot and a spring in
both normal and tangential directions:

Nij = Knδn + Cnδ̇
ij
n Tij = Ktδt + Ctδ̇

ij
t



SimulatingGranularMedia p

The Contact Dynamics (Moreau, 1988)

The contact model

NO explicit model, but two proscriptions instead:
• Hardcore approximation: no overlap
• Coulombic friction: the tangential force is bounded
=⇒ 2Nc inequalities:

(di + dj) < lri − rjl

l Tij

Nij

l < µ

Cannot be included in a set of motion equations...



SimulatingGranularMedia p

Numerical collapses



SimulatingGranularMedia p

Application to the collapse experiment
Initial geometry: H0, L0, a = H0/L0 Final geometry: the runout L

(Lajeunesse et al 2004)

L− L0

L0

'
{
λ1 a a < a0
λ2 a

2/3 a > a0



SimulatingGranularMedia p

Numerical collapses

We recover the experimental scaling law:

L− L0

L0

=

{
2.50 a if a . 2,

3.25 a0.7 if a & 2.



OUTLINE p

• Discrete Simulation of Granular Media

• Continuum Modeling: Defining an equivalent viscosity

• Continuum vs discrete simulation



Physical Modeling p

• Modeling the fluid-like behavior (equivalent viscosity...)

• Describing the static-flowing transition



Physical Modeling p

TheGas-Like State p

For dilute agitated flows: φ ≤ φm, temperature T =< v2 > − < v >2

- Fluctuating velocity c ' T 1/2

- Mean free path `
- Typical inter-collision time τ = `/c

Pressure:

(` + D)P = m
dv

dt
= ρD2 c

τ

P = ρ
D2

`(` + D)
T

Viscosity:

σ = ρ
D2

`
T 1/2dv

dy

η ∝ T 1/2

(Azanza, Chevoir & Moucherond, 1998)

⇒ Application of the kinetic theory of gas to granular flows



Physical Modeling p

TheCase ofDense Flows p

For dense flows: φm ≤ φ ≤ φM , λ << D

Bagnold (1954):

Momentum transfer due to collisions for a dense gravity-driven flow?

Typical time: τ = (dv/dz)−1

σxzS = m× dv

dt

σxz = ρD × dv

dz
× D

τ

σxz = ρD2 ×
(
dv

dz

)2

Shear-rate dependent viscosity :

η = ρD2
dv

dz



Physical Modeling p

• Granular systems can be static: frictional properties

• Granular systems can flow: viscous properties

⇒ We use friction to define viscosity:

We form the visco-plastic law:

τ

P
= µ

τij =
µP

| γ̇ |
γ̇ij

using the phenomenological µ(I) rheology:

µ(I) = µ1 +
µ2 − µ1

I0/I + 1

I =
Dγ̇√
P/ρ Gdr MIDI 2004, Dacruz et al 2005, Jop et al 2006



ContinuumModeling ofGranular Flow p

• Solving numerically the equations for the motion of viscous fluid
Open-source solver for incompresible Navier-Stokes using a VOF method
(Popinet 2003, 2009)
http: //gfs.sourceforge.net

∇.u = 0

ρ

(
∂u

∂t
+ u.∇u

)
= −∇p +∇.(2ηD) + ρg

∂c

∂t
+∇.(cu) = 0

ρ = cρ1 + (1− c)ρ2 , η = cη1 + (1− c)η2

• Implementing the non-standard granular rheology

µ(I) = µs +
∆µ

I0/I + 1
with I = d

D2√
p/ρ

Viscosity:

η =
µ(I)P

D2



TheCollapse Experiment byGerris p

Implementation: we consider from small to large aspect ratios
we chose µs, ∆µ et I0 maximizing agreement with discrete simulations.

• Low density and viscosity for the surrounding fluid,

• No-slip condition at the bottom



TheCollapse Experiment byGerris p

Small aspect ratio:

Évolution de la forme
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TheCollapse Experiment byGerris p

Small aspect ratio: Inner deformation



TheCollapse Experiment byGerris p

Large aspect ratio:

Évolution de la forme
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TheCollapse Experiment byGerris p

Large aspect ratio: Inner deformation



Granular Collapse byGerris p

Scaling law for the runout:

We do recover:

L− L0

L0

'


λ1 a a < a0
λ2 a

2/3 a > a0



Around theCenter ofMass p

Structure de l’écoulement autour du centre de masse
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⇒ Velocity profile around the center of mass?



Around theCenter ofMass p

The acceleration phase
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Around theCenter ofMass p

The deceleration phase

0,0 1,0 2,0 3,0 4,0

t / (H
0
/g)

1/2

0

1

2

3

4

5

y/
d

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

v
x
 / (gH

0
)
1/2

0

5

10

15

20

25

y/
d



Around theCenter ofMass p

The stopping phase
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TheCollapse Experiment byGerris p

Case of a very large aspect ratio

Lagrée, Staron & Popinet, JFM 2011



Conclusions p

• Different tools for the simulation of granular matter
→ problem of computation cost

• Prospect of reliable continuum simulation
→ problem of physical modeling




