Equilibrium figures

* Historical aspects
— Collisions + reaccumulation
— Rubble piles - Agrégats gravitationnels

— Long spin period, elongated bodies, LASPA
 Stars, planets and satellites spheroidal
* Asteroids tri-axial ellipsoids, sometimes very elongated

— What size barrier for rubble piles?



Gravity

Different cases in this school

small g

— the granular systems on Earth,
experiments and natural

micro ug

— granular and regolith on surface
close to spin barrier v_esc, or not so close

capital G

— self gravitating bodies
body scale > grain scale



Equilibrium figures

 Observations

* Shape models
— Farinella
— Magnusson
— Holsapple

* Spin barrier

Triaxial Equilibrium Ellipsoids among the Asteroids?
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— Rubble piles
— Other forces in play ?



Shapes from LC

(7) Iris Real life

2293 E=2010-12-10.55786  M=2011-01-20 T=0.3007 (0.0004) f=0.824
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* Hydrostatic equilib. (incomp. fluid)
not valid

Equilibrium Sequence (projected)
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Farinella et al. 1982
Asteroids as outcome of catastrophic collissions
— rubble piles —
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* Final result of re-accumulation?
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Equilibrium figures

* Binary asteroids

— Detection, study, not easy
— MBB, TNB, NEB, Trojans and Centaurs

* Origin - can be diverse
— Fission (in two)
— breakup
— Re-accumulation
— Others (capture, ...)
— « The story of the black sheep »



Equilibrium figures

Dobrovolskis (1982) stresses in tri-axial bodies

Shear stress
Tresca

|T|max = (0-1_0-3)/2 > So

Friction
|T|=S,—tan(p) o

Fi1G. 4. Contour map of the maximum shear stress
17| max (In millibars) over an equatorial section of Pho-
bos.



Canup (2005)
giant impact + reaccumulation

SEARCH ARTICLES

A Giant Impact Origin
of Pluto-Charon

Robin M. Canup
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Fig. 2. Time series of a potential Pluto-Charon—forming impact yielding a planet-moon system
(run 20 in Table 1 with N = 20,000 particles). Results are shown at times t =0.9, 3.2, 5.9, 7.5, 11.2,
and 27.5 hours; distances are shown in units of 10 km and color scales with the change in
temperature in kelvin. The impacting objects have uniform serpentine compositions. After an
initially very oblique impact with a 73° impact angle (A), the two objects separate (B and C) and
during this period the smaller impactor receives a net torque from the distorted figure of the
target. After a second, even more grazing encounter (D), an additional portion of the impactor is
accreted onto the planet, while the rest self-contracts into an intact moon containing 12% of the
central planet's mass that is again torqued by the ellipsoidal figure of the target (D and E) onto a
stable orbit with a semimajor axis of 6.5 R and an eccentricity of e = 0.5. The final moon in (F) is
described by 2232 SPH particles.



Nesvorny et al. (2008-2010)
gravitationnal collapse

KBO Binary

Principle model parameters:

R = radius of a KBO that . Assumption:
constains all of the mass with - Gas drag is negligible
a density of 1.0 g/cm® _ b
- Solar tides are negligible

Q = orbital frequency of
swarm around its own

center of mass

- Particle sizes ~ 1 meter




Walsh et al. (2008)
Spin-up




Equilibrium figures

* Binaries
— Mass + volume => density
— (hydr. equil.) spin+shape => density
=>Test

— Spin+shape + J2
=> |nterior

— Evolution, tides ?
— Porosity is uncertain (meteorite analogue)



Shapes & Case studies

 What interior ? what behavior to
solicitations (forces, torques, stresses, heat,...)

 What influence of history (tides, collisions, ...)

* Ranges of size different model ?
— 100m — 10km — 100km

2
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R
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— 0.1 Pa to 100 Mpa, pressure at centre
— visco-plastic and/or visco-elastic ?

)
)
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Conclusion

. bad weather on Wednesday
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