Equilibrium states for rubble piles

P. Tanga, C. Comito Observatoire de la Côte d'Azur

General context: how much is (not) known	
Property	status
« good » orbits	~ 50%
rotation periods	4000
global shapes,	
+ pole directions	~300
spectral type	~ 1800
masses, σ < 60%	~ 40
size , σ < 10%	~ 500 (+ 10⁵ WISE)
satellites	~ 200

Context

- Asteroid shapes compared to three axis ellipsoids
 For explaining observed brightness variations
- Easy comparison to fluid equilibrium theories
- Can we model observed shapes with our method and rubble pile structures?
 - Their evolution?
 - Binary asteroids?

How far from "fluid" equilibrium?

Triangles: three axial shape ratios from Kryszczynska et al., 2007

On the other plane...

Common (dangerous) practice

- How to compute density when no information on the absolute size of a body is known
- Photometry
 - rotation period
 - Lightcurve amplitude \rightarrow axis ratio b/a
- Find corresponding normalized spin
- Deduce density!

Gravitational slopes are low (in general)

Eros Asphaug et al 2002

...and Kleopatra Ostro et al 2002

Are these shapes close to fluid??

7

Numerical approach

- *pkdgrav* code using « Hard spheres »
- Optimized gravity computation
 - Tree code
 - Used also for collision detection
- Parallelized
- Tested in a variety of situations
 - Disperse systems (rarefied rings/disks)
 - Compact objects (« rubble pile »)
 - Close packing
 - Random packing
 - Monodispersed particles
 - Polydispersed particles (\rightarrow « fluid-like » behavior)

8

- Observed objects (white)
- Simulation results (blue)

Why?

- Is this a consequence of the gravitational collapse?
- ... or an after-collapse reshaping?
- Are the objects really « far » from fluid equilibrium?

On the tracks of equilibrium shapes

Total energy

• A gravitational aggregate tends to minimize

$$\tilde{E} = E_{grav} + E_{rot}$$

• Simplest hypothesis: evolution shall follow

$$-\overrightarrow{\nabla}\widetilde{E}$$

at constant angular momentum ...even for fragmented, non-fluid bodies

Flatness of the potential

Simulations

- We want to verify the simple « relax to fluid » hypothesis
- Initial conditions created by collapse of particle clouds
 - Self-gravity driven
 - Random packing
- Initial conditions on a grid of axis ratios
 - At given angular momentums

The energy field is « flat » on the axis ratio plane

Let's try with aggregates made by spheres

• Pkdgrav (hard spheres, dissipative collisions)

...we start from a variety of shapes (b/a, c/b) not at equilibrium

Random packing

Shape evolution - 1

L = 0.2

Shape evolution - 2

P. Tanga et al. *Rubble-pile reshaping reproduces overall asteroid shapes*, ApJ (Letters) 706 (2009)

A general scenario

- Non disruptive seismic events, impacts, tides...
 « shake » asteroids
- They allow the fragments to displace
- Shapes follow energy gradient toward minimum
- They stop their evolution following the pattern of the energy field
- The resulting shape distribution is in agreement with the observations

Consequences

 The energy field is « flat » → most observed shapes are probably « close » to fluid equilibrium

- ...even if they not appear as ellipsoidal!

- ...as such, a small friction angle is sufficient to explain the observed distribution of macroscopic shapes
- The other way around: overall shape is not very informative on the internal strength of a body

– Don't derive density by assuming equilibrium!

Splitting rubble-piles

Paolo Tanga – Observatoire de la Côte d'Azur

Paolo Tanga – Observatoire de la Côte d'Azur

2

Maison du Seminaire - Nice - October 17-21

Aims

- Explore shape evolution in proximity of the breakup barrier
- Investigate the role of initial shapes
- Application to satellite formation?

Method

- pkdgrav: N-body gravitational code hard spheres and collisions
- no friction
 - but restitution coeff. = 0.8 (both radial and tangential)
- "asteroids" of 1000 equal spheres (50 m) and 3 g/cm³ density (but also variations of those parameters)
- Getting close to the spin barrier:
 - Spin-up by "kicks" (rigid rotation added)
 - 0.01%-1% in angular momentum increase
 - check reshaping and wait for stability before the subsequent kick
 - $(\rightarrow$ very similar to Walsh et 2008 for satellite formation)

angular momentum evolution

Typical evolution: mass losses

• Two typical situations not mutually exclusive:

satellite formation by accretion of fragments (Walsh et al. 2008)

Paolo Tanga – Observatoire de la Côte d'Azur

Evolution Sequence - L vs ω^2

2

Summary

- Splitting occurs when/where expected by fluid theory
 - They are very close to fluid: repose/"friction" angle \sim 5°
- Shape evolution poorly/not sensitive to initial shape
 - in flattened spheroids small asymmetries develop into a pearshaped body before splitting
- Obtained systems are moderately-to-highly chaotic
 Small change in initial conditions → different evolution
- 40% of cases do form large satellites, regardless of dimension or density (15% - 50% primary mass)
 - Difference from Walsh et al. (~7% at most)
- not all satellites are stable (in a few orbits)
- biggest satellites (>≈20% primary mass) are more stable
 → Scheeres 2007, Pravec et al. 2010

Limitations

- The code is unable to follow long-term evolution of the couples
 - Approximate computation of gravity
 - Other approximations... (multiple collision handling...)
- Attempt to simulate a tidal effect on a satellite orbit:

Evolution of the system

initial relaxation followed by secondary tidal frictioning / spin-orbit coupling

we can "freeze" bodies into rigid rubble piles just after splitting ...